131 research outputs found

    Phosphorus retention in calcareous soils and the effect of organic matter on its mobility

    Get PDF
    A survey of the interactions between phosphorus (P) species and the components of calcareous soils shows that both surface reactions and precipitation take place, especially in the presence of calcite and limestone. The principal products of these reactions are dicalcium phosphate and octacalcium phosphate, which may interconvert after formation. The role of calcium carbonate in P retention by calcareous soils is, however, significant only at relatively high P concentrations – non-carbonate clays play a more important part at lower concentrations. In the presence of iron oxide particles, occlusion of P frequently occurs in these bodies, especially with forms of the element that are pedogenic in origin. Progressive mineralization and immobilization, often biological in nature, are generally observed when P is added as a fertilizer. Manure serves both as a source of subsurface P and an effective mobilizing agent. Blockage of P sorption sites by organic acids, as well as complexation of exchangeable Al and Fe in the soil, are potential causes of this mobilization. Swine and chicken manure are especially rich P sources, largely due the practice of adding the element to the feed of nonruminants. Humic materials, both native and added, appear to increase recovery of Olsen P. In the presence of metal cations, strong complexes between inorganic P and humates are formed. The influence of humic soil amendments on P mobility warrants further investigation

    Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices

    Get PDF
    AbstractThis paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits of a pervious pavement when the use of traditional paving surfaces is the preferred option

    Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants

    Get PDF
    How species coexist despite competing for the same resources that are in limited supply is central to our understanding of the controls on biodiversity. Resource partitioning may facilitate coexistence, as co-occurring species use different sources of the same limiting resource. In plant communities, however, direct evidence for partitioning of the commonly limiting nutrient, phosphorus (P), has remained scarce due to the challenges of quantifying P acquisition from its different chemical forms present in soil. To address this, we used 33P to directly trace P uptake from DNA, orthophosphate and calcium phosphate into monocultures and mixed communities of plants growing in grassland soil. We show that co-occurring plants acquire P from these important organic and mineral sources in different proportions, and that differences in P source use are consistent with the species’ root adaptations for P acquisition. Furthermore, the net benefit arising from niche plasticity (the gain in P uptake for a species in a mixed community compared to monoculture) correlates with species abundance in the wild, suggesting that niche plasticity for P is a driver of community structure. This evidence for P resource partitioning and niche plasticity may explain the high levels of biodiversity frequently found in P-limited ecosystems worldwide

    Humic acids: Their detergent qualities and potential uses in pollution remediation

    No full text
    Humic acids are amphiphilic species whose behavior in aqueous solution suggests that they form pseudomicelles–aggregates akin to the micelles familiar from synthetic surfactant chemistry. It is thought that humic pseudomicelles can be formed by both intramolecular coiling and intermolecular association, depending on the molecular weight, structural characteristics, and polydispersity of the humic acid in question. The process does not feature a critical micelle concentration. Experimental evidence indicates that metal ions enhance the detergent character of dissolved humic acid by facilitating the coiling and folding of the polymer chains. A recently conceived alternative model suggests that humic acids consist of relatively small subunits that associate through weak molecular interactions. This view appears to run counter to certain experimental observations, but deserves careful attention. The strong association between metal ions and solid humic acid makes it possible to use an inexpensive commercial grade for the decontamination of polluted water. A continuous elution process through a column packed with humic acid allows for the removal of both heavy metals and organic xenobiotics from aqueous solution.</p
    • …
    corecore