7 research outputs found

    Short-term effects of a large dam decommissioning on biofilm structure and functioning

    Get PDF
    Aging dams and the rising efforts to restore stream ecosystems are increasing the number of dam decommissioning programs. Although dam decommissioning aims at improving in-stream habitat, biodiversity, and ecosystem functioning in the long term, it might also cause ecological impacts in the short term due to the mobilization of the sediment accumulated in the reservoir. Benthic biofilm in particular can be impaired by episodes of high turbidity and scouring. We conducted a multiple before-after/control-impact experiment to assess the effects of the drawdown of a large dam (42 m tall), a first step to its decommissioning, on biofilm structure (biomass and chlorophyll-a) and functioning (metabolism, nutrient uptake, and organic matter breakdown). Our results show that the reservoir drawdown reduced the autotrophic biofilm biomass (chlorophyll-a) downstream from the dam, which in turn lowered metabolism. However, nitrogen and phosphorus uptake by the biofilm was not affected. Organic matter breakdown was slower below the dam than in nearby undammed reaches before and during drawdown. All drawdown effects quickly disappeared and reaches downstream from the dam approached values found in nearby undammed reaches. Thus, our results indicate that the effects of reservoir drawdown on stream biofilms exist but may be small and disappear rapidly.This research was supported by the Fundación BBVA (064-17). The authors also acknowledge the financial support from the Basque Government (Consolidated Research Group: Stream Ecology 7-CA-18/10) predoctoral fellowships from the University of the Basque Country UPV/EHU (M.A.). The authors are especially grateful to the municipality of Donostia-San Sebastian and the staff of Artikutza for their continuous support during the experiment

    Interactive effects of discharge reduction and fine sediments on stream biofilm metabolism

    Get PDF
    Discharge reduction, as caused by water diversion for hydropower, and fine sediments deposition, are prevalent stressors that may affect multiple ecosystem functions in streams. Periphytic biofilms play a key role in stream ecosystem functioning and are potentially affected by these stressors and their interaction. We experimentally assessed the interactive effects of discharge and fine sediments on biofilm metabolism in artificial indoor channels using a factorial split-plot design with two explanatory variables: water discharge (20, 39, 62, 141 and 174 cm3 s-1) and fine sediments (no sediment or 1100 mg L-1 of sediments). We incubated artificial tiles for 25 days in an unpolluted stream to allow biofilm colonization, and then placed them into the indoor channels for acclimation for 18 days. Subsequently, we manipulated water discharge and fine sediments and, after 17 days, we measured biofilm chlorophyll-a concentration and metabolism. Water velocity (range, 0.5 to 3.0 cm s-1) and sediment deposition (range, 6.1 to 16.6 mg cm-2) increased with discharge, the latter showing that the effect of increased inputs prevailed over sloughing. In the no-sediment treatments, discharge did not affect biofilm metabolism, but reduced chlorophyll-a. Sediments, probably as a consequence of nutrients released, promoted metabolism of biofilm and chlorophyll-a, which became independent of water discharge. Our results indicate that pulses of fine sediments can promote biofilm algal biomass and metabolism, but show interactive effects with discharge. Although discharge reduction can affect the abundance of basal resources for food webs, its complex interactions with fine sediments make it difficult to forecast the extent and direction of the changes.This research was funded by the Spanish Department of Economy, Industry and Competitiveness through the project GL2016-77487-R(DIVERSION),the European Social Fund, the Basque Government (Consolidated Research Group IT951-16) and the Biscay Province Council (61/2015). AVPC carried out this workt hanksto a pre-doctoral grant by the Spanish Department of Economy, Industry and Competitiveness (BES-2017-081959). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Immediate and Legacy Effects of Urban Pollution on River Ecosystem Functioning: a Mesocosm Experiment

    Get PDF
    Effluents from urban wastewater treatment plants (WWTP) consist of complex mixtures of substances that can affect processes in the receiving ecosystems. Some of these substances (toxic contaminants) stress biological activity at all concentrations, while others (e.g., nutrients) subsidize it at low concentrations and stress it above a threshold, causing subsidy-stress responses. Thus, the overall effects of WWTP effluents depend mostly on their composition and the dilution capacity of the receiving water bodies. We assessed the immediate and legacy effects of WWTP effluents in artificial streams, where we measured the uptake of soluble reactive phosphorus (SRP) by the biofilm, biomass accrual, benthic metabolism and organic matter decomposition (OMD). In a first phase (32 d), the channels were subjected to a gradient of effluent contribution, from pure stream water to pure effluent. WWTP effluent affected the ecosystem processes we measured, although we found no clear subsidy-stress patterns except for biofilm biomass accrual. Instead, most of the processes were subsidized, although they showed complex and process-specific patterns. Benthic metabolism and OMD were subsidized without saturation, as they peaked at medium and high levels of pollution, respectively, but they never fell below control levels. SRP uptake was the only process that decreased with increasing effluent concentration. In a second phase of the experiment (23 d), all channels were kept on pure stream water to analyse the legacy effects of the effluent. For most of the processes, there were clear legacy effects, which followed either subsidy, stress, or subsidy-stress patterns. SRP uptake capacity was stressed with increasing pollution legacy, whereas algal accrual and benthic metabolism continued being subsidized. Conversely, biofilm biomass accrual and OMD showed no legacy effects. Overall, the WWTP effluent caused complex and process-specific responses in our experiment, mainly driven by the mixed contribution of subsidizers and stressors. These results help improving our understanding of the effects of urban pollution on stream ecosystem functioning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.This research was supported by the European Union 7th Framework Programme (GLOBAQUA; 603629-ENV-2013-6.2.1). Authors also acknowledge the financial support from the University of the Basque Country (pre-doctoral fellowship to O. Pereda), the Basque Government (Consolidated Research Group: Stream Ecology 7-CA-18/10), and the Economy and Knowledge Department of the Catalan Government (Consolidated Research Group: ICRA-ENV 2017 SGR 1124). Authors are also especially grateful to Maria Casellas, Carme Font, Carmen Gutiérrez, Ferran Romero and Laia Sabater-Liesa for their assistance during the laboratory experiments

    The drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions from a temperate reservoir

    Get PDF
    Dam decommissioning (DD) is a viable management option for thousands of ageing dams. Reservoirs are large carbon sinks, and reservoir drawdown results in important carbon dioxide (CO2) and methane (CH4) emissions. We studied the effects of DD on CO2 and CH4 fluxes from impounded water, exposed sediment, and lotic water before, during, and 3-10 months after drawdown of the Enobieta Reservoir, north Iberian Peninsula. During the study period, impounded water covered 0-100%, exposed sediment 0-96%, and lotic water 0-4% of the total reservoir area (0.14 km(2)). Areal CO2 fluxes in exposed sediment (mean [SE]: 295.65 [74.90] mmol m(-2) d(-1)) and lotic water (188.11 [86.09] mmol m(-2) d(-1)) decreased over time but remained higher than in impounded water (-36.65 [83.40] mmol m(-2) d(-1)). Areal CH4 fluxes did not change over time and were noteworthy only in impounded water (1.82 [1.11] mmol m(-2) d(-1)). Total ecosystem carbon (CO2 + CH4) fluxes (kg CO2-eq d(-1)) were higher during and after than before reservoir drawdown because of higher CO2 fluxes from exposed sediment. The reservoir was a net sink of carbon before reservoir drawdown and became an important emitter of carbon during the first 10 months after reservoir drawdown. Future studies should examine mid- and long-term effects of DD on carbon fluxes, identify the drivers of areal CO2 fluxes from exposed sediment, and incorporate DD in the carbon footprint of reservoirs.This study was funded by the projects Alteration of carbon sinks and sources in shrinking inland waters (Alter-C), the Spanish Ministry of Science, Innovation and Universities (refs: PID2020-114024GB-C31 funded by MCIN/AEI/10.13039/501100011033/) and Effects of the drawdown of Enobieta Reservoir (Navarre) on the biodiversity and functioning of river ecosystems (DESEMBALSE), Foundation BBVA (ref: PI064-17). AM was supported by an FI grant from the Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat de Catalunya. DvS and BO acknowledge support through the Consolidated Research Group 2017SGR0976. RM acknowledges support by the Generalitat de Catalunya through the Consolidated Research Group 2017SGR1124, and by the CERCA program. AE and MA support of the Basque Government through the Consolidated Research Group IT951-16. AM got a predoctoral grant by the University of the Basque Country (UPV/EHU). DvS is a Serra Hunter Fellow

    Testing Wastewater Treatment Plant Effluent Effects on Microbial and Detritivore Performance: a Combined Field and Laboratory Experiment

    Get PDF
    The amount of pollutants and nutrients entering rivers via point sources is increasing along with human population and activity. Although wastewater treatment plants (WWTPs) greatly reduce pollutant loads into the environment, excess nutrient loading is a problem in many streams. Using a Community and Ecosystem Function (CEF) approach, we quantified the effects of WWTP effluent on the performance of microbes and detritivores associated to organic matter decomposition, a key ecosystem process. We measured organic matter breakdown rates, respiration rates and exo-enzymatic activities of aquatic microbes. We also measured food consumption and growth rates and RNA to body-mass ratios (RNA:BM) of a dominant amphipod Echinogammarus berilloni. We predicted responses to follow a subsidy-stress pattern and differences between treatments to increase over time. To examine temporal effects of effluent, we performed a laboratory microcosm experiment under a range of effluent concentrations (0, 20, 40, 60, 80 and 100%), taking samples over time (days 8, 15 and 30; 4 and 10 replicates to assess microbe and detritivore performance respectively, per treatment and day). This experiment was combined with a field in situ Before-After Control-Impact Paired (BACIP) experiment whereby we added WWTP effluent poured (10 L s(-1) during 20-40 min every 2 h) into a stream and collected microbial and detritivore samples at days 8 and 15 (5 and 15 replicates to assess the microbe and detritivore performance respectively, per period, reach and sampling day). Responses were clearer in the laboratory experiment, where the effluent caused a general subsidy response. Field measures did not show any significant response, probably because of the high dilution of the effluent in stream water (average of 1.6%). None of the measured variables in any of the experiments followed the predicted subsidy-stress response. Microbial breakdown, respiration rates, exo-enzymatic activities and invertebrate RNA:BM increased with effluent concentrations. Differences in microbial respiration and exo-enzymatic activities among effluent treatments increased with incubation time, whereas microbial breakdown rates and RNA:BM were consistent over time. At the end of the laboratory experiment, microbial respiration rates increased 156% and RN:BM 115% at 100% effluent concentration. Detritivore consumption and growth rates increased asymptotically, and both responses increased with by incubation time. Our results indicate that WWTP effluent stimulates microbial activities and alters detritivore performance, and stream water dilution may mitigate these effects.This work has been supported by the EU7th Framework Programme Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. We also acknowledge financial support in terms of pre doctoral grants from the University of the Basque Country UPV/EHU (L. Solagaistua) and the Basque Government (I. de Guzman, L. Mijangos). The manuscript benefited greatly from the valuable comments of John Kominoski and two anonymous referees. Also SGIker technical and human support (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged

    Water diversion and pollution interactively shape freshwater food webs through bottom-up mechanisms

    Get PDF
    [EN] Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.Ministerio de Economia, Industria y Competitividad, Gobierno de Espana, Grant/Award Number: GL2016-77487-R; European Social Fund; Diputacion Foral de Bizkaia; Serra Hunter Fellow; Labex, Grant/Award Number: ANR-10-LABX-41; H2020 European Research Council; Eusko Jaurlaritza; Consejo Nacional de Investigaciones Cientificas y Tecnicas; FRAGCLIM Consolidator, Grant/Award Number: 72617
    corecore