147 research outputs found
Quantum ergodicity for graphs related to interval maps
We prove quantum ergodicity for a family of graphs that are obtained from
ergodic one-dimensional maps of an interval using a procedure introduced by
Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take
the L^2 functions on the interval. The proof is based on the periodic orbit
expansion of a majorant of the quantum variance. Specifically, given a
one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an
increasingly refined sequence of partitions of the interval. To this sequence
we associate a sequence of graphs, whose directed edges correspond to elements
of the partitions and on which the classical dynamics approximates the
Perron-Frobenius operator corresponding to the map. We show that, except
possibly for subsequences of density 0, the eigenstates of the quantum graphs
equidistribute in the limit of large graphs. For a smaller class of observables
we also show that the Egorov property, a correspondence between classical and
quantum evolution in the semiclassical limit, holds for the quantum graphs in
question.Comment: 20 pages, 1 figur
Evaluating competing perspectives towards undeclared work: some lessons from Bulgaria
When explaining and tackling the undeclared economy in Central and Eastern Europe, participants have been conventionally viewed as rational economic actors. They engage in undeclared work when the benefits outweigh the costs. Participation is thus deterred by increasing the sanctions and/or probability of being caught. Recently, however, an alternative social actor approach has emerged which views participants as engaging in undeclared work when their norms, values and beliefs (i.e., citizen morale) do not align with the laws and regulations (i.e., state morale). Here, therefore, initiatives to develop greater symmetry between civic and state morale are pursued. To evaluate the validity and effectiveness of these competing explanations and policy approaches, 2,004 face-to-face interviews conducted in Bulgaria in late 2015 are reported. Logit marginal effects regression analysis reveals no association between participation in undeclared work and the perceived level of penalties and risk of detection, but a strong significant association with the level of asymmetry between citizen and state morale; the greater the asymmetry, the higher is the likelihood of participation in undeclared work. The paper concludes by discussing the implications for explaining and tackling undeclared work
Explaining and tackling unregistered employment : evidence from an employers’ survey
When explaining and tackling employers participating in the informal economy, they have been conventionally viewed as rational economic actors who engage when the benefits outweigh the costs, and thus their participation is deterred by increasing the sanctions and/or risks of detection. An emergent social actor approach, however, has explained employers as engaging in the informal economy when there is a lack of vertical trust (i.e., their norms, values and beliefs are not in symmetry with the laws and regulations) and horizontal trust (i.e., they believe many others are being non-compliant). The aim of this paper is to evaluate these competing perspectives by reporting a 2015 survey of 450 employers in FYR Macedonia. The finding is that although there is no association between employers using unregistered workers and the perceived level of penalties and risks of detection, there is a strong significant association with both the level of vertical and horizontal trust. Those whose beliefs do not align with the laws and regulations display a significantly greater likelihood of employing unregistered workers, as do those who perceive a larger proportion of the population to be engaged in the informal economy. The theoretical and policy implications are then discussed
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modelled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyse the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterisation of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
EUSO-SPB1 mission and science
The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations
The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
- …