20 research outputs found

    Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions

    Get PDF
    Two different thiol-redox-systems exist in plant chloroplasts, the ferredoxin-thioredoxin system, which depends of ferredoxin reduced by the photosynthetic electron-transport chain and, thus, of light, and the NADPH-dependent thioredoxin reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested therefore that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of thioredoxin-f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis mutants, combined - but not single - deficiencies of thioredoxin-f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson-cycle activity and starch accumulation. Light-activation of key-enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH/NADP+ and ATP/ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation and light-vulnerability of photosystem I core-proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both co-localized in the same chloroplast substructure. Results provide genetic evidence that light and NADPH dependent thiol-redox systems interact at the level of thioredoxin-f1 and NTRC to coordinately participate in the regulation of Calvin-Benson-cycle, starch metabolism and growth in response to varying light conditions.Peer reviewe

    The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence

    Get PDF
    Bacteria inject effector proteins into host cells to manipulate cellular processes that promote disease. Since bacteria deliver minuscule amounts of effectors only into targeted host cells, it is technically challenging to capture effector-dependent cellular changes from bulk-infected host tissues. Here, we report a new technique called effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), which facilitates affinity-based purification of nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors. Analysis of purified nuclei reveals that the Xanthomonas effector XopD manipulates the expression of Arabidopsis abscisic acid signalling-related genes and activates OSCA1.1, a gene encoding a calcium-permeable channel required for stomatal closure in response to osmotic stress. The loss of OSCA1.1 causes leaf wilting and reduced bacterial growth in infected leaves, suggesting that OSCA1.1 promotes host susceptibility. eINTACT allows us to uncover that XopD exploits host OSCA1.1/abscisic acid osmosignalling-mediated stomatal closure to create a humid habitat that favours bacterial growth and opens up a new avenue for accurately elucidating functions of effectors from numerous gram-negative plant bacteria in native infection contexts.Fil: You, Yuan. Eberhard Karls Universität Tübingen; AlemaniaFil: Koczyk, Grzegorz. Polish Academy of Sciences; ArgentinaFil: Nuc, Maria. Polish Academy of Sciences; ArgentinaFil: Morbitzer, Robert. Eberhard Karls Universität Tübingen; AlemaniaFil: Holmes, Danalyn R.. Eberhard Karls Universität Tübingen; AlemaniaFil: von Roepenack Lahaye, Edda. Eberhard Karls Universität Tübingen; AlemaniaFil: Hou, Shiji. Huazhong Agricultural University; ChinaFil: Giudicatti, Axel Joel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Gris, Carine. Université de Toulouse; FranciaFil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Noël, Laurent D.. Université de Toulouse; FranciaFil: Krajewski, Paweł. Polish Academy of Sciences; ArgentinaFil: Lahaye, Thomas. Eberhard Karls Universität Tübingen; Alemani

    A plant virus causes symptoms through the deployment of a host-mimicking protein domain to attract the insect vector.

    Get PDF
    During compatible plant-virus interactions, viruses can interfere with the normal developmental program of their hosts, leading to the appearance of phenotypes that we usually identify as ‘’symptoms of infection’’ (leaf curling and yellowing, stunting, dwarfism, necrosis). Despite their relevance, the molecular mechanisms underlying symptom induction and their biological meaning, if any, remain poorly understood. By using tomato yellow leaf curl virus (TYLCV, Geminivirus) as model, we have isolated C4 as the main protein responsible for the induction of TYLCV-associated symptoms in tomato. C4, by mimicking a host protein domain, the Conserved C-termini in LAZY1 protein family (CCL) domain, physically interacts with the RCC1-like domain-containing plant proteins (RLDs). By interacting with the RLDs through the CCL-like domain, C4 displaces one endogenous interactor, LAZY (LZY), interfering with RLD functions in processes such as auxin signaling and endomembrane trafficking, which correlates with the manifestation of symptoms. Surprisingly, we observed that appearance of C4-mediated symptoms in tomato plants plays no major role in viral replication nor movement, but they serve as attractants for the insect vector, the whitefly Bemisia tabaci, which preferentially feeds on tomato plants exhibiting strong symptoms of viral infection. These results suggest that, during plant-virus co-evolution, symptoms may have appeared as a strategy to promote viral transmission by the insect vector, at least in some specific plant-virus-vector pathosystems.Work in RLD’s lab is partially funded by the Excellence Strategy of the German Federal and State Governments, the ERC-COG GemOmics (101044142), the DeutscheForschungsgemeinschaft (DFG, German Research foundation) (project numbers LO 2314/1-1 and SBF 1101/3, C08), and a Royal Society Newton Advance grant (NA140481 – NAF\R2\180857). EA is the recipient of a Marie Skłodowska-Curie Grant from the European Union’s Horizon 2020 Research and Innovation Program (Grant 896910-GeminiDECODER). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Lipid transfer from plants to arbuscular mycorrhiza fungi

    No full text
    corecore