350 research outputs found
Quasideuteron states with deformed core
The M1 transitions between low-lying T=1 and T=0 states in deformed odd-odd
N=Z nuclei are analyzed in the frames of the rotor-plus-particle model. Using
the representation of an explicit coupling of angular momenta we show that
strong coupling of the quasideuteron configurations to the axially deformed
core results in a distribution of the total 0+ --> 1+ strength among a few
low-lying 1+ states. Simple analytical formulae for B(M1) values are derived.
The realization of the M1 sum rule for the low-lying 1+,T=0 states is
indicated. The calculated B(M1) values are found to be in good agreement with
experimental data and reveal specific features of collectivity in odd-odd N=Z
nuclei.Comment: 11 pages, 1 figure, LaTe
Simple relations among E2 matrix elements of low-lying collective states
A method is developed to derive simple relations among the reduced matrix
elements of the quadrupole operator between low-lying collective states. As an
example, the fourth order scalars of Q are considered. The accuracy and
validity of the proposed relations is checked for the ECQF Hamiltonian of the
IBM-1 in the whole parameter space of the Casten triangle. Furthermore these
relations are successfully tested for low-lying collective states in nuclei for
which all relevant data is available.Comment: 12 pages, 1 figure, RevTeX preprint-styl
Quadrupole shape invariants in the interacting boson model
In terms of the Interacting Boson Model, shape invariants for the ground
state, formed by quadrupole moments up to sixth order, are studied in the
dynamical symmetry limits and, for the first time, over the whole structural
range of the IBM-1. The results are related to the effective deformation
parameters and their fluctuations in the geometrical model. New signatures that
can distinguish vibrator and gamma-soft rotor structures, and one that is
related to shape coexistence, are identified.Comment: 10 pages, ReVTeX, epsf, 2 Postscript figures include
Entangled Quantum Clocks for Measuring Proper-Time Difference
We report that entangled pairs of quantum clocks (non-degenerate quantum
bits) can be used as a specialized detector for precisely measuring difference
of proper-times that each constituent quantum clock experiences. We describe
why the proposed scheme would be more precise in the measurement of proper-time
difference than a scheme of two-separate-quantum-clocks. We consider
possibilities that the proposed scheme can be used in precision test of the
relativity theory.Comment: no correction, 4 pages, RevTe
Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4
Various physical quantities are measured and analysed for the Cu-substituted
thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the
substituted Cu enhances the thermoelectric power, while it does not increase
the resistivity significantly. The susceptibility and the electron
specific-heat are substantially decreased with increasing x, which implies that
the substituted Cu decreases the effective-mass enhancement. Through a
quantitative comparison with the heavy fermion compounds and the valence
fluctuation systems, we have found that the Cu substitution effectively
increases the coupling between the conduction electron and the magnetic
fluctuation. The Cu substitution induces a phase transition at 22 K that is
very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Salerno's model of DNA reanalysed: could solitons have biological significance?
We investigate the sequence-dependent behaviour of localised excitations in a
toy, nonlinear model of DNA base-pair opening originally proposed by Salerno.
Specifically we ask whether ``breather'' solitons could play a role in the
facilitated location of promoters by RNA polymerase. In an effective potential
formalism, we find excellent correlation between potential minima and {\em
Escherichia coli} promoter recognition sites in the T7 bacteriophage genome.
Evidence for a similar relationship between phage promoters and downstream
coding regions is found and alternative reasons for links between AT richness
and transcriptionally-significant sites are discussed. Consideration of the
soliton energy of translocation provides a novel dynamical picture of sliding:
steep potential gradients correspond to deterministic motion, while ``flat''
regions, corresponding to homogeneous AT or GC content, are governed by random,
thermal motion. Finally we demonstrate an interesting equivalence between
planar, breather solitons and the helical motion of a sliding protein
``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J.
Biol. Phys., accepted 02/09/0
Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei
A generalized M1 sum rule for orbital magnetic dipole strength from excited
symmetric states to mixed-symmetry states is considered within the
proton-neutron interacting boson model of even-even nuclei. Analytic
expressions for the dominant terms in the B(M1) transition rates from the first
and second states are derived in the U(5) and SO(6) dynamic symmetry
limits of the model, and the applicability of a sum rule approach is examined
at and in-between these limits. Lastly, the sum rule is applied to the new data
on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio
is obtained in a largely
parameter-independent wayComment: 19 pages, 3 figures, Revte
Velocity-force characteristics of an interface driven through a periodic potential
We study the creep dynamics of a two-dimensional interface driven through a
periodic potential using dynamical renormalization group methods. We find that
the nature of weak-drive transport depends qualitatively on whether the
temperature is above or below the equilibrium roughening transition
temperature . Above , the velocity-force characteristics is Ohmic,
with linear mobility exhibiting a jump discontinuity across the transition. For
, the transport is highly nonlinear, exhibiting an interesting
crossover in temperature and weak external force . For intermediate drive,
, we find near a power-law velocity-force characteristics
, with , and well-below ,
, with . In the limit
of vanishing drive () the velocity-force characteristics crosses over
to , and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.
Measurement of event shape distributions and moments in e+e- -> hadrons at 91-209 GeV and a determination of alpha_s
We have studied hadronic events from e+e- annihilation data at centre-of-mass
energies from 91 to 209 GeV. We present distributions of event shape
observables and their moments at each energy and compare with QCD Monte Carlo
models. From the event shape distributions we extract the strong coupling
alpha_s and test its evolution with energy scale. The results are consistent
with the running of alpha_s expected from QCD. Combining all data, the value of
alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +-
0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the
moments is also used to determine a value of alpha_s with slightly larger
errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016
(hadr.) +0.0054 -0.0036 (theo.).Comment: 63 pages 26 fi
Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP)
Poly(methyl methacrylate) in the brush form is grown from the surface of magnetite nanoparticles by ambient temperature atom transfer radical polymerization (ATATRP) using a phosphonic acid based initiator. The surface initiator was prepared by the reaction of ethylene glycol with 2-bromoisobutyrl bromide, followed by the reaction with phosphorus oxychloride and hydrolysis. This initiator is anchored to magnetite nanoparticles via physisorption. The ATATRP of methyl methacrylate was carried out in the presence of CuBr/PMDETA complex, without a sacrificial initiator, and the grafting density is found to be as high as 0.90 molecules/nm2. The organic–inorganic hybrid material thus prepared shows exceptional stability in organic solvents unlike unfunctionalized magnetite nanoparticles which tend to flocculate. The polymer brushes of various number average molecular weights were prepared and the molecular weight was determined using size exclusion chromatography, after degrafting the polymer from the magnetite core. Thermogravimetric analysis, X-ray photoelectron spectra and diffused reflection FT-IR were used to confirm the grafting reaction
- …