6,034 research outputs found
On quantum coding for ensembles of mixed states
We consider the problem of optimal asymptotically faithful compression for
ensembles of mixed quantum states. Although the optimal rate is unknown, we
prove upper and lower bounds and describe a series of illustrative examples of
compression of mixed states. We also discuss a classical analogue of the
problem.Comment: 23 pages, LaTe
On compatibility and improvement of different quantum state assignments
When Alice and Bob have different quantum knowledges or state assignments
(density operators) for one and the same specific individual system, then the
problems of compatibility and pooling arise. The so-called first
Brun-Finkelstein-Mermin (BFM) condition for compatibility is reobtained in
terms of possessed or sharp (i. e., probability one) properties. The second BFM
condition is shown to be generally invalid in an infinite-dimensional state
space. An argument leading to a procedure of improvement of one state
assifnment on account of the other and vice versa is presented.Comment: 8 page
Unknown Quantum States: The Quantum de Finetti Representation
We present an elementary proof of the quantum de Finetti representation
theorem, a quantum analogue of de Finetti's classical theorem on exchangeable
probability assignments. This contrasts with the original proof of Hudson and
Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced
mathematics and does not share the same potential for generalization. The
classical de Finetti theorem provides an operational definition of the concept
of an unknown probability in Bayesian probability theory, where probabilities
are taken to be degrees of belief instead of objective states of nature. The
quantum de Finetti theorem, in a closely analogous fashion, deals with
exchangeable density-operator assignments and provides an operational
definition of the concept of an ``unknown quantum state'' in quantum-state
tomography. This result is especially important for information-based
interpretations of quantum mechanics, where quantum states, like probabilities,
are taken to be states of knowledge rather than states of nature. We further
demonstrate that the theorem fails for real Hilbert spaces and discuss the
significance of this point.Comment: 30 pages, 2 figure
Effects and Propositions
The quantum logical and quantum information-theoretic traditions have exerted
an especially powerful influence on Bub's thinking about the conceptual
foundations of quantum mechanics. This paper discusses both the quantum logical
and information-theoretic traditions from the point of view of their
representational frameworks. I argue that it is at this level, at the level of
its framework, that the quantum logical tradition has retained its centrality
to Bub's thought. It is further argued that there is implicit in the quantum
information-theoretic tradition a set of ideas that mark a genuinely new
alternative to the framework of quantum logic. These ideas are of considerable
interest for the philosophy of quantum mechanics, a claim which I defend with
an extended discussion of their application to our understanding of the
philosophical significance of the no hidden variable theorem of Kochen and
Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations
of Physic
Physician-Specific Symptoms of Burnout Compared to a Non-Physicians Group
Physician burnout is a systemic problem in health care due to its high prevalence and its negative impact on professional functioning and individual well-being. While unique aspects of the physician role contributing to the development burnout have been investigated recently, it is currently unclear whether burnout manifests differently in physicians compared to the non-physician working population. We conducted an individual symptom analysis of burnout symptoms comparing a large sample of physicians with a non-physician group. In this cross-sectional online study, burnout was assessed with the Maslach Burnout Inventory—General Survey. We matched physicians with non-physicians regarding their age, gender, educational level, occupational status, and total burnout level using a “nearest neighbour matching” procedure. We then conducted a series of between-groups comparisons. Data of 3846 (51.0% women) participants including 641 physicians and 3205 non-physicians were analysed. The most pronounced difference was that physicians were more satisfied with their work performance (medium effect size (r = 0.343). Our findings indicate minor yet significant differences in burnout phenomenology between physicians and non-physicians. This demonstrates unique aspects of physician burnout and implies that such differences should be considered in occupational research among physicians, particularly when developing burnout prevention programs for physicians
Nonlinear rheology of colloidal dispersions
Colloidal dispersions are commonly encountered in everyday life and represent
an important class of complex fluid. Of particular significance for many
commercial products and industrial processes is the ability to control and
manipulate the macroscopic flow response of a dispersion by tuning the
microscopic interactions between the constituents. An important step towards
attaining this goal is the development of robust theoretical methods for
predicting from first-principles the rheology and nonequilibrium microstructure
of well defined model systems subject to external flow. In this review we give
an overview of some promising theoretical approaches and the phenomena they
seek to describe, focusing, for simplicity, on systems for which the colloidal
particles interact via strongly repulsive, spherically symmetric interactions.
In presenting the various theories, we will consider first low volume fraction
systems, for which a number of exact results may be derived, before moving on
to consider the intermediate and high volume fraction states which present both
the most interesting physics and the most demanding technical challenges. In
the high volume fraction regime particular emphasis will be given to the
rheology of dynamically arrested states.Comment: Review articl
interference in the Coulomb dissociation of B
We investigate the effects arising out of the interference in the
Coulomb dissociation of B at beam energies below and around 50 MeV/nucleon.
The theory has been formulated within a first order semiclassical scheme of
Coulomb excitation, in which both the ground state and the continuum state wave
functions of B enter as inputs. We find that the magnitude of the
interference could be large in some cases. However, there are some specific
observables which are free from the effects of the interference,
which is independent of the models used to describe the structure of B.
This will be useful for the analysis of the breakup data in relation to the
extraction of the astrophysical factor .Comment: Revised version to appear in Physical Review
Efficient total energy calculations from self-energy models
We propose a new method for calculating total energies of systems of interacting electrons, which requires little more computational resources than standard density-functional theories. The total energy is calculated within the framework of many-body perturbation theory by using an efficient model of the self-energy, that nevertheless retains the main features of the exact operator. The method shows promising performance when tested against quantum Monte Carlo results for the linear response of the homogeneous electron gas and structural properties of bulk silicon
Precursors for cytochrome P450 profiling breath tests from an in silico screening approach
The family of cytochrome P450 enzymes (CYPs) is a major player in the metabolism of drugs and xenobiotics. Genetic polymorphisms and transcriptional regulation give a complex patient-individual CYP activity profile for each human being. Therefore, personalized medicine demands easy and non-invasive measurement of the CYP phenotype. Breath tests detect volatile organic compounds (VOCs) in the patients’ exhaled air after administration of a precursor molecule. CYP breath tests established for individual CYP isoforms are based on the detection of 13CO2 or 14CO2 originating from CYP-catalyzed oxidative degradation reactions of isotopically labeled precursors. We present an in silico work-flow aiming at the identification of novel precursor molecules, likely to result in VOCs other than CO2 upon oxidative degradation as we aim at label-free precursor molecules. The ligand-based work-flow comprises five parts: (1) CYP profiling was encoded as a decision tree based on 2D molecular descriptors derived from established models in the literature and validated against publicly available data extracted from the DrugBank. (2) Likely sites of metabolism were identified by reactivity and accessibility estimation for abstractable hydrogen radical. (3) Oxidative degradation reactions (O- and N-dealkylations) were found to be most promising in the release of VOCs. Thus, the CYP-catalyzed oxidative degradation reaction was encoded as SMIRKS (a programming language style to implement reactions based on the SMARTS description) to enumerate possible reaction products. (4) A quantitative structure property relation (QSPR) model aiming to predict the Henry constant H was derived from data for 488 organic compounds and identifies potentially VOCs amongst CYP reaction products. (5) A blacklist of naturally occurring breath components was implemented to identify marker molecules allowing straightforward detection within the exhaled air.peer-reviewe
Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors
While visual comparison of directed acyclic graphs (DAGs) is commonly
encountered in various disciplines (e.g., finance, biology), knowledge about
humans' perception of graph similarity is currently quite limited. By graph
similarity perception we mean how humans perceive commonalities and differences
in graphs and herewith come to a similarity judgment. As a step toward filling
this gap the study reported in this paper strives to identify factors which
influence the similarity perception of DAGs. In particular, we conducted a
card-sorting study employing a qualitative and quantitative analysis approach
to identify 1) groups of DAGs that are perceived as similar by the participants
and 2) the reasons behind their choice of groups. Our results suggest that
similarity is mainly influenced by the number of levels, the number of nodes on
a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception,
Similarity, Comparison, Visualizatio
- …