111,773 research outputs found

    Microscopic analysis of K^+-nucleus elastic scattering based on K^+N phase shifts

    Full text link
    We investigate K+K^{+}-nucleus elastic scattering at intermediate energies within a microscopic optical model approach. To this effect we use the current K+K^{+}-nucleon {\it (KN)} phase shifts from the Center for Nuclear Studies of the George Washington University as primary input. First, the {\it KN} phase shifts are used to generate Gel'fand-Levitan-Marchenko real and local inversion potentials. Secondly, these potentials are supplemented with a short range complex separable term in such a way that the corresponding unitary and non-unitary {\it KN} SS matrices are exactly reproduced. These {\it KN} potentials allow to calculate all needed on- and off-shell contributions of the tt matrix,the driving effective interaction in the full-folding K+K^{+}-nucleus optical model potentials reported here. Elastic scattering of positive kaons from 6^{6}Li, 12^{12}C, 28^{28}Si and 40^{40}Ca are studied at beam momenta in the range 400-1000 MeV/{cc}, leading to a fair description of most differential and total cross section data. To complete the analysis the full-folding model, three kinds of simpler tρt\rho calculations are considered and results discussed. We conclude that conventional medium effects, in conjunction with a proper representation of the basic {\it KN} interaction are essential for the description of K+K^{+}-nucleus phenomena.Comment: 11 pages, 1 table, 12 figures, submitted to PR

    Interference of multiplane wings having elliptical lift distribution

    Get PDF
    In calculating the self-induction of a wing surface, elliptical lift distribution is assumed, while in calculating the mutual induction or interference of two wing surfaces, a uniform distribution of the lift along the wing has hitherto been assumed. Whether the results of these calculations are substantially altered by assuming an elliptical lift distribution (which is just as probable as uniform distribution) is examined here

    Spectrum and Dynamics of the BCS-BEC crossover from a few-body perspective

    Full text link
    The spectrum of two spin-up and two spin-down fermions in a trap is calculated using a correlated gaussian basis throughout the range of the BCS-BEC crossover. These accurate calculations provide a few-body solution to the crossover problem. This solution is used to study the time-evolution of the system as the scattering length is changed, mimicking experiments with Fermi gases near Fano-Feshbach resonances. The structure of avoiding crossings in the spectrum allow us to understand the dynamics of the system as a sequence of Landau-Zener transitions. Finally, we propose a ramping scheme to study atom-molecule coherence.Comment: 4 pages, final version to appear in PR
    corecore