-TONAL ADVISORY COMMITTEE FOR AERONAUTICS

TEGFNIGAI NOTES
FElt $2 \mathrm{MAILED}^{124}$ NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

- 0 Ins theosett

No. 181

INTERFERENCE OF MUUMIPLANE WINGS HAVING
ELLIPTICAL LIFT DISTRIBUTION.
By H. vol Sander.

From Technische Berichte, Volume III, No. 7.

February, 1924.

NATIONAL ADVISORY COMNITTEE FOR AERONAUPIGS.

TECHNICAL NOTE KO. 181.

INTERFERENGE OF MUITIPLANE WINGS HAVING
ELIIPTICAL LIFT DISTRIBUTION.*
By H. von Sanden.

In calculating the self-induction of a wing surface, elliptical lift distribution is aseumed; while in calculating the mutual induction or interference of two wing surfaces, a uniform distribution of lift along the wing has hitherto been assumed. \qquad Whether the results of these calculations are substantially altered by assuming an elliptical lift distribution (phich is \qquad just as probable as uniform distribution) is examined in the present communication.

Let the span of two rectangular, unstaggered vings, normal to the plane of symmetry be taken as $b=2 i$ and their gap as G. Let the lift on the lower wing be elliptically distributed.* The eddies passing off from the trailing edge of the upper wing produce a vertically downward positive acceleration, which, at a distance of ε from the center of the wing, amounts to
$D(\epsilon)=\frac{L}{2 \pi^{2} \rho V l^{2}} \int_{-l}^{+z} \frac{(x-\epsilon) x d x}{\left\{G^{2}+(\epsilon-x)^{2}\right\rangle \sqrt{l^{2}-x^{2}}}$ \therefore

[^0]After introducing a new variable integration x, defined ky $\frac{x}{l}=\sin u$, we oktain

$$
D(\epsilon)=\frac{L}{2 \pi^{2} \rho V i^{2}} \int_{-\pi / 2}^{+\pi / 2} \frac{l \sin u(i \sin u-\epsilon)}{G^{2}+(l \sin u-\epsilon)^{2}} d u .
$$

The integral has been graphically determined for

$$
\frac{\epsilon}{l} \quad=0,0.2,0.4,0.6,0.8,1.0 \text { and }
$$

$$
\frac{2 l}{G!}=z=4.8,12.5 . \text { For the average value }
$$

$$
D_{i n}=\frac{1}{l} f_{0}^{i} \Gamma(\epsilon) d \epsilon=\frac{L}{2 \pi^{2} \rho V^{2} l^{2}} f
$$

we obtained the values of f given below, together with the corresponding average values of $\bar{D}_{\mathrm{r}}=\frac{\mathrm{L}}{2 \pi^{2} \rho V^{2} l^{2}} \bar{f}$ (for comparison) and the proportionate differences for a uniform distribution of lift.

π	f	$\overline{\mathrm{f}} ;$	
4	1.10	1.11	Difference
8	1.71	1.64.	4.5%
12.5	1.98	1.98	4.2%

Tithin the limits of the values of z occurring in practice, the difference, therefore, is insignificant. For greater .values, it increases without limit, since for $z=\infty$ and $\overline{\mathrm{D}}_{\mathrm{m}}=\infty$, while $\overline{\mathrm{D}}_{\mathrm{m}}=\frac{\mathrm{L}}{2 \pi^{2} \rho V^{2} l^{2}} \times 3.15$.

It is worth noting in considering the acceleration $D(\varepsilon)$, which is plotted in the accompanying figure for $z=8$, that

with elliptical distribution of lift on the lower wing, $D(\epsilon)$ is negative at the ends of the upper virg, that is, the acceleration is here directed uprard, so that tive actual angle of attack of the upper wing becomes larger at the ends. The turning up of the wing tips, therefore, appears justifiable.

Translated by
National Advisory Committee for Aeronautics.

[^0]: * From Technische Berichte, Volume III, No. 7, pp. 291-2. (1918). (Commuication from the Bavarian Airplane Works.)
 ** Gremmel "Die aerodynamischen Grunglagen des Fluges," (The Aerodynamical Basis of Flight," p.119.

