99 research outputs found

    Data-Driven Database Education: A Quantitative Study of SQL Learning in an Introductory Database Course

    Get PDF
    The Structured Query Language (SQL) is widely used and challenging to master. Within the context of lab exercises in an introductory database course, this thesis analyzes the student learning process and seeks to answer the question: ``Which SQL concepts, or concept combinations, trouble students the most?\u27\u27 We provide comprehensive taxonomies of SQL concepts and errors, identify common areas of student misunderstanding, and investigate the student problem-solving process. We present an interactive web application used by students to complete SQL lab exercises. In addition, we analyze data collected by this application and we offer suggestions for improvement to database lab activities

    Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    Full text link
    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed (n) sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.Comment: 17 pages, 7 figure

    Microearthquake activity adjacent to the Rocklin pluton near Auburn, California

    Get PDF
    The occurrence of the Oroville earthquake (M_L = 5.7) of August 1, 1975 heightened interest in the seismotectonics of the Sierra foothills region and particularly the Foothills fault system. Clark (1960) recognized the Foothills fault system as being a major structural feature of the western Sierra Nevada. An 11-week reconnalssance microearthquake study was conducted by Woodward-Clyde Consultants (WCC) for the U.S. Bureau of Reclamation (USBR) to assess the seismic activity of the Sierra foothills 75 km S-SE of Oroville near Auburn, California. Microearthquake activity was detected in the Rocklin-Auburn region with eight events recorded during July 1 to July 24 and seven events during August 15 to October 8, 1976 (see Figure 1). The mobile seismic array consisted of eight Sprengnether MEQ-800 portable seismographs with Mark Products L-4C vertical seismometers. Data recordings were normally 48 hours in length, with a record speed of 1 mm/sec

    Quantum-assisted finite-element design optimization

    Get PDF
    Quantum annealing devices such as the ones produced by D-Wave systems are typically used for solving optimization and sampling tasks, and in both academia and industry the characterization of their usefulness is subject to active research. Any problem that can naturally be described as a weighted, undirected graph may be a particularly interesting candidate, since such a problem may be formulated a as quadratic unconstrained binary optimization (QUBO) instance, which is solvable on D-Wave's Chimera graph architecture. In this paper, we introduce a quantum-assisted finite-element method for design optimization. We show that we can minimize a shape-specific quantity, in our case a ray approximation of sound pressure at a specific position around an object, by manipulating the shape of this object. Our algorithm belongs to the class of quantum-assisted algorithms, as the optimization task runs iteratively on a D-Wave 2000Q quantum processing unit (QPU), whereby the evaluation and interpretation of the results happens classically. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of a QPU, and not to prove supremacy over existing classical finite-element algorithms for design optimization.Comment: 17 pages, 5 figure

    Quantum-assisted finite-element design optimization

    Get PDF
    Quantum annealing devices such as the ones produced by D-Wave systems are typically used for solving optimization and sampling tasks, and in both academia and industry the characterization of their usefulness is subject to active research. Any problem that can naturally be described as a weighted, undirected graph may be a particularly interesting candidate, since such a problem may be formulated a as quadratic unconstrained binary optimization (QUBO) instance, which is solvable on D-Wave's Chimera graph architecture. In this paper, we introduce a quantum-assisted finite-element method for design optimization. We show that we can minimize a shape-specific quantity, in our case a ray approximation of sound pressure at a specific position around an object, by manipulating the shape of this object. Our algorithm belongs to the class of quantum-assisted algorithms, as the optimization task runs iteratively on a D-Wave 2000Q quantum processing unit (QPU), whereby the evaluation and interpretation of the results happens classically. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of a QPU, and not to prove supremacy over existing classical finite-element algorithms for design optimization.Algorithms and the Foundations of Software technolog
    • …
    corecore