
DATA-DRIVEN DATABASE EDUCATION: A QUANTITATIVE STUDY OF

SQL LEARNING IN AN INTRODUCTORY DATABASE COURSE

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Andrew Von Dollen

July 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/231901294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2019

Andrew Von Dollen

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Data-Driven Database Education: A

Quantitative Study of SQL Learning in an

Introductory Database Course

AUTHOR: Andrew Von Dollen

DATE SUBMITTED: July 2019

COMMITTEE CHAIR: Alex Dekhtyar, Ph.D.

Professor

Computer Science & Software Engineering

COMMITTEE MEMBER: Chris Lupo, Ph.D.

Professor

Computer Science & Software Engineering

COMMITTEE MEMBER: Lubomir Stanchev, Ph.D.

Professor

Computer Science & Software Engineering

iii

ABSTRACT

Data-Driven Database Education: A Quantitative Study of

SQL Learning in an Introductory Database Course

Andrew Von Dollen

The Structured Query Language (SQL) is widely used and challenging to

master. Within the context of lab exercises in an introductory database course,

this thesis analyzes the student learning process and seeks to answer the question:

“Which SQL concepts, or concept combinations, trouble students the most?” We

provide comprehensive taxonomies of SQL concepts and errors, identify common

areas of student misunderstanding, and investigate the student problem-solving

process. We present an interactive web application used by students to complete

SQL lab exercises. In addition, we analyze data collected by this application and

we offer suggestions for improvement to database lab activities.

iv

ACKNOWLEDGMENTS

The author would like to thank Dr. Alex Dekhtyar for invaluable guidance

and an excellent set of SQL lab exercises; Dr. Lubomir Stanchev, for instill-

ing in me an appreciation of database internals and serving on my committee;

Dr. Chris Lupo, for leading a wonderful department and serving on my com-

mittee; Olga Dekhtyar, for lending statistical expertise; and Toshihiro Kuboi, for

data-gathering assistance. Sincere thanks also to my mother-in-law, Dr. Regina

Migler, for sparking my interest in academia; my parents and family, for steady

encouragement along the way; and to my loving, kind, patient, and infinitely

supportive wife, Theresa.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 6

2.1 The Relational Data Model 6

2.2 Relational Algebra . 7

2.3 The Structured Query Language 11

2.4 Teaching Relational Algebra and SQL 15

2.5 Related Work . 18

2.5.1 SQL Concepts and Common Errors 19

2.5.2 SQL Semantics and Correctness 20

2.5.3 Query Similarity . 21

2.5.4 SQL Testing and Quality Metrics 23

2.5.5 Interactive Lab Environments 24

2.5.6 Database Lab Environments 25

2.5.7 Concept Inventory Construction and Evaluation . . 26

3 TOOL IMPLEMENTATION . 28

3.1 Application Overview . 28

3.2 Instructor Features . 30

3.3 User Interface for Students 31

vi

4 METHODOLOGY . 36

4.1 Overview . 37

4.2 Experimental Design . 38

4.3 Lab Assignments and Query Types 39

4.3.1 Query Types and SQL Concepts 40

4.4 Data Set . 45

4.4.1 Raw Data . 45

4.4.2 Error Taxonomy . 47

4.5 Error Detection . 52

5 RESULTS . 54

5.1 Overview of Results . 54

5.2 Analysis by Instructor . 55

5.3 Lab A Analysis . 57

5.3.1 Repeated Measures ANOVA 59

5.3.2 Lab A Discussion 61

5.4 Lab B Analysis . 61

5.5 Lab C Analysis . 63

5.5.1 Consolidated Discussion of Difficult Concepts 65

5.6 Analysis of Errors . 65

5.6.1 Common Syntax Errors 66

5.6.2 Difficult-to-Resolve Syntax Errors 68

5.6.3 Terminal Attempts 71

vii

5.7 Quantifying Student Learning 72

5.8 Principal SQL Concepts . 74

5.9 Concept Associations . 76

6 THREATS TO VALIDITY . 79

7 CONCLUSIONS AND FUTURE WORK 81

7.1 Recommendations for Lab Improvement 81

7.1.1 Concept Combinations 82

7.1.2 Recently-Added SQL Features 82

7.1.3 SQL Interpretation Skill 83

7.1.4 Emphasis on ANSI-Standard SQL 84

7.2 Future Work . 84

7.2.1 Curriculum Mapping & Dynamic Exercise Assignment 85

7.2.2 Formalizing Concept Associations 85

7.2.3 Automatic Error Detection 86

7.2.4 Further Investigation of Terminal Attempts 86

7.2.5 Measuring the Impact of Lecture 87

BIBLIOGRAPHY . 88

APPENDICIES

A EXPERIMENTAL MATERIALS 94

A.1 Informed Consent Form 94

B LAB DATABASES . 96

C CLASSIFICATION OF LAB EXERCISES 106

viii

D LAB EXERCISES . 106

D.1 Selected Exercises from Lab A 107

D.2 Selected Exercises from Lab B 109

D.3 Selected Exercises from Lab C 111

ix

LIST OF TABLES

Table Page

2.1 Sample DEPARTMENT Relation, with Primary Key DeptId . . . 6

2.2 Sample STUDENT Relation, with Primary Key StudentId, and

Foreign Key DeptId . 7

2.3 Example of Selection and Projection in Relational Algebra 8

2.4 Cartesian Product of STUDENT and DEPARTMENT 9

2.5 Result of a Natural Join Between Relations STUDENT and DE-

PARTMENT with a Further Selection and Projection Applied . . 10

4.1 Course Enrollment and Study Participants 38

4.2 Lab Databases Used in this Study 40

4.3 Summary of Lab Assignments Used in this Study 42

4.4 SQL Query Concepts Studied in this Thesis 44

4.5 Summary of the Distribution of SQL Concepts Across Lab Assign-

ments . 45

4.6 High-Level Groups Used to Categorize Student-Submitted SQL

Queries . 48

4.7 Classification of Syntax Errors, as Proposed by Taipalus et al. [36] 50

4.8 Classification of Semantic Errors, First Proposed by Brass & Gold-

berg [4], further Studied by Taipalus et al. [36] 50

4.9 Classification of Logical Errors, as Described by Taipalus et al. [36] 51

x

4.10 Queries Deemed Correct by Lab 365 but Deemed Invalid by Man-

ual Review (Percentage Average Across Exercises in Each Lab.) . 52

5.1 Results from Two-sample K-S Test [20], Comparing Percent Suc-

cess and Average Attempts for Each Exercise, by Instructor. . . . 58

5.2 Exercises from Lab A on Which We Focus Our Detailed Analysis. 59

5.3 Lab A ANOVA Result for Exercises AIRLINES-3, AIRLINES-4,

AIRLINES-5, CSU-4, and CSU-6 60

5.4 Lab B ANOVA Result for Exercises INN-5, KATZENJAMMER-4,

and KATZENJAMMER-6 . 62

5.5 Exercises from Lab B on Which We Focus Detailed Analysis . . . 63

5.6 Lab C ANOVA Result for Exercises BAKERY-8, BAKERY-9, and

MARATHON-5 . 63

5.7 Exercises from Lab C on Which We Focus Detailed Analysis. . . . 64

5.8 Cases Where More than Five Attempts Were Required to Resolve

a Syntax Error . 70

5.9 Categorization of Terminal Attempts 72

5.10 Core SQL Concepts Ranked by Subjective Complexity 75

5.11 Frequently-Occurring (≥ 90% support) Subsets of SQL Concepts

in Successful Student Responses 78

xi

LIST OF FIGURES

Figure Page

3.1 Lab 365 Application Database, Entity-Relationship Diagram . . . 29

3.2 Lab 365: Lab Assignment Setup Screen; Available Only to Instruc-

tors . 30

3.3 Lab 365: Instructor Home Screen; Displays High-Level Student

Progress for Each Lab Exercise 31

3.4 Lab 365: User Home Screen; Lists Available Lab Assignments . . 32

3.5 Lab 365: Main Lab Exercise Screen, User’s View 33

3.6 Lab 365: SQL Syntax Error Display, User’s View 34

4.1 SQL Concept Co-occurrence Matrix, Where Values in Each Cell

Represent the Number of Times the Two Concepts Appear in the

Same SQL Exercise . 46

5.1 Percent Success by Instructor . 56

5.2 Average Attempts by Instructor 56

5.3 Histogram of Lab Exercises, Binned by Percent of Students who

Successfully Solved the Exercise, Split by Instructor 57

5.4 Histogram of Lab Exercises, Binned by Average Attempt Count

per Student, Split by Instructor. 57

5.5 Summary of Lab A . 58

5.6 Summary of Lab B . 62

5.7 Summary of Lab C . 64

xii

5.8 Syntax Error Percentages for All Exercises in Lab A (Per-Student

Averages) . 67

5.9 Syntax Error Percentages for All Exercises in Lab B (Per-Student

Averages) . 67

5.10 Syntax Error Percentages for All Exercises in Lab C (Per-Student

Averages) . 67

5.11 Syntax Errors for all Lab Assignments, Comparing Syntax Error

Proportions Between Students who Correctly Solved the Exercise

with Students who Did Not Submit a Correct Response 68

5.12 Syntax Errors, Attempts Required to Fix 69

5.13 Student Work Sequence: Grouping Restrictions 73

5.14 Student Work Sequence: Does Not Exist 73

5.15 Average Attempts and Percent Success for the 18 Core SQL Con-

cepts Listed in Table 5.10 . 77

.1 AIRLINES Database - ER Diagram 97

.2 BAKERY Database - ER Diagram 98

.3 CARS Database - ER Diagram 99

.4 CSU Database - ER Diagram . 100

.5 INN Database - ER Diagram . 101

.6 KATZENJAMMER Database - ER Diagram 102

.7 MARATHON Database - ER Diagram 103

.8 STUDENTS Database - ER Diagram 104

xiii

.9 WINE Database - ER Diagram 105

.10 Lab A Exercises and Concepts . 113

.11 Lab B Exercises and Concepts . 114

.12 Lab C Exercises and Concepts . 115

xiv

1 Introduction

Databases are widely used as core components of modern software systems. In

any application that must maintain persistent information, a database manage-

ment system often works behind the scenes to support reliable, efficient, and

scalable data storage and retrieval. In particular, Relational Database Manage-

ment Systems (RDBMS) and the Structured Query Language (SQL) have been

dominant since the 1980s in the fields of finance, telecommunications, most en-

terprise software, as well as a wide variety of other application domains. With

the advent of NoSQL and NewSQL database management systems [27], SQL and

its companion relational model have been re-framed and implemented in new

ways. However, the underlying relational foundations remain just as relevant

and ubiquitous today as they have been for the last several decades.

Undergraduate database courses typically introduce students to the relational

data model, Relational Algebra, and the Structured Query Language (SQL). SQL

is a special-purpose declarative programming language used for data access and

manipulation [7]. Most students readily learn the fundamentals of SQL due to its

approachable syntax. As SQL query complexity grows, however, the appearance

of simplicity often fades, revealing nuances and behaviors that can confuse the

beginning student [38]. In some cases, this confusion may be traced to an in-

complete grasp of the relational theory that underlies SQL. In other cases, SQL’s

unfamiliar declarative syntax is the source of confusion. Sadiq et al. [30] suggest

that many student difficulties with SQL stem from the language’s declarative

nature, which forces learners to abandon the notion of steps, a common program-

ming concept, and instead to think in sets. In an attempt to clearly understand

the difficulties faced by students who are learning SQL, we focus this thesis on

1

common errors and student approaches to the process of translating English in-

formation requests into valid SQL queries that produce the desired result.

We further seek to identify, analyze, and ultimately work to correct cases

where the approach taken by students devolves into simple trial and error mode,

without careful problem analysis and evaluation of an attempted solution’s cor-

rectness. When learning SQL, it is especially important that students ask ques-

tions such as: “Which relational concepts or patterns are most appropriate for

this specific problem?” and “Does my solution solve the general problem clearly

and efficiently?” Evaluating these questions requires that students develop a

thorough understanding of the ways in which the features of SQL fit together, as

well as a sound mental model of relational operators. Our study aims to highlight

areas where these learning tasks may be particularly challenging.

Within the context of lab exercises in an introductory database course, we

gather data and perform analysis. With this analysis, we seek catalog SQL query

types and their varying levels of perceived difficulty. We also quantitatively study

common errors in SQL, and identify patterns in the ways individual student

solutions progress. Our ultimate goal is to better teach students to write valid

queries in SQL.

We study individual student behavior across multiple lab exercises to con-

struct a broad picture of the evolution over time of student approaches to prob-

lem solving. From this data, we extract trends related to query types and errors

encountered, determining how individual students’ approaches to solving SQL

query problems may change over time. We also seek to identify problem-solving

approaches and patterns shared by multiple students. Identification of these

patterns offers insight into the habits students develop when faced with SQL

programming tasks of varying levels of complexity. This analysis of challeng-

2

ing concepts and patterns will be used as an guide for the enhancement of lab

exercises, while also identifying possible areas that deserve more emphasis or

explanation during lectures of in other instructional material.

To conduct our study, we developed a custom tool to gather in real time and

later analyze student interactions with a database management system, includ-

ing all SQL statements issued by the student. We performed this data collection

with the approval of Cal Poly’s Institutional Research Board and with each stu-

dent’s explicit informed consent. The data we gathered provides a window into

the problem solving approach followed by students as they complete course lab

assignments. Our custom tool allowed passive collection of detailed data that

would have been impossible to gather via surveys or similar instruments. We

used these data to expand upon previous work devoted to the study of common

semantic errors in SQL conducted by Brass and Goldberg [4], as well as studies of

SQL learning by Taipalus et al. [36] [35] and Ahadi et al. [2]. We confirmed the

completeness and accuracy of previously-compiled lists of common errors within

the context of an undergraduate database course. We also compiled additional

detailed statistics that provide insight into temporal relationships between errors.

Put another way, we were able to determine whether students who encountered

error X typically went on to later face error Y, perhaps representing a compound-

ing aspect to initial confusion. Understanding these relationships between errors,

along with student problem-solving patterns, allowed us to develop recommenda-

tions for course material and instructional tools that may help prevent student

misunderstandings from accruing over time.

Our study also included a longitudinal investigation of student problem solv-

ing techniques. For each student, we collected timestamped data over the course

of an academic quarter. The data consist of full SQL statements issued by the

3

student to the database for each exercise, along with the outcome: either success

or, in the case of a syntax error, the specific error code and descriptive message

returned by the RDBMS. With our detailed, longitudinal data, we identified

misunderstandings that precede common errors, and developed a picture of the

varying problem-solving approaches students followed after encountering a par-

ticular error. Using our study results to add depth to previously-compiled lists

of common errors, we provide recommendations for additional teaching exam-

ples, enhanced practice problems, as well as improved lab exercises. Ultimately,

we intend to validate these improved instructional tools and methods in future

database courses.

The main contributions of this thesis are:

• Design and implementation of an online database lab tool, which we refer

to as “Lab 365”,

• Data collection in an introductory database course, spanning four sections

taught by two instructors over two academic quarters,

• Statistical analysis of student effort, common errors, and student problem-

solving processes, and

• Suggestions for improvement to lab activities.

With our analysis and recommendations, we aim to address areas where stu-

dents face particular difficulty when learning relational concepts as they are im-

plemented in the Structured Query Language.

The remainder of this document is organized as follows: In Chapter 2, we

provide background information on the relational data model, relational algebra,

4

and SQL as well as a survey of related work. Chapter 3 describes the design

and implementation of Lab 365, the web-based application we constructed to

support this research. In Chapter 4, we discuss our research goals and methods

used to conduct this study. Chapter 5 presents results of our study along with

narrative analysis. Chapter 6 discusses threats to this study’s validity. Finally,

Chapter 7 offers summary conclusions, describes our recommendations for course

improvement, and suggests ideas for future investigations that extend the study

from this thesis.

5

2 Background and Related Work

2.1 The Relational Data Model

The relational data model plays a fundamental role of modern data management.

Relational database management systems (RDBMS) such as PostgreSQL, Oracle,

Microsoft SQL Server, and MySQL are in widespread use today. All share a

common foundation in relational concepts introduced by EF Codd in 1969 [11].

The relational model serves as a logical representation of data, independent of the

precise physical layout used for storage. In this logical model, the central data

structure is the relation, or a set of tuples. A relational schema is defined based on

a set of named attributes; each attribute has a defined domain (scalar data type).

In less formal terms, a relation can be viewed as a two-dimensional table with

named columns where values in a given column are all of the same simple, atomic

type (atomic types include: integer, string, date, or decimal number). Tables 2.1

and 2.2 show example DEPARTMENT and STUDENT relations which might

form a small part of a university’s database.

Table 2.1: Sample DEPARTMENT Relation, with Primary Key DeptId

DeptId College DeptName

CSC CENG Computer Science

MATH COSAM Mathematics

BIO COSAM Biology

The relational data model further defines integrity rules used to ensure that

the contents of a database adhere to certain constraints. Each relation must

have a single primary key, consisting of an attribute or combination of attributes

whose value uniquely identifies a single tuple in that relation. Key values may

6

Table 2.2: Sample STUDENT Relation, with Primary Key StudentId, and For-

eign Key DeptId Referencing the DEPARTMENT Relation (Table 2.1)

StudentId FirstName LastName DeptId DateEnrolled

001 Samuele Naldrett CSC 2017-05-06

002 Dario Stiger BIO 2018-12-18

003 Minda Hallick CSC 2018-07-13

be used to create references from one tuple to another tuple, a concept known as

referential integrity or foreign key constraints. The DeptId attribute (column) in

the STUDENT relation depicted in Table 2.2 serves as a foreign key which references

the primary key of the DEPARTMENT relation shown in Table 2.1.

2.2 Relational Algebra

In addition to the relational model’s basic structure and integrity rules, a formal

algebra has been defined for manipulation and queries over relational data. Re-

lational algebra builds on first-order logic and set theory to define five primitive

operators on relations: selection, projection, set union, set difference, and Carte-

sian product. Each operator takes one or two relations as its operands and yields

a new relation.

The unary selection (σ) and projection (π) operators each take a single re-

lation and return a filtered, possibly rearranged relation that contains a subset

of the original relation’s rows (in the case of selection) or a subset of columns

(when projection is applied.) The example in Table 2.3 shows a simple example

of selection combined with projection. Selection relies on a filter predicate over

attribute values, which may be expressed using logical connectors: conjunction,

7

disjunction, or negation. Selection returns only those tuples that satisfy the filter

expression. Projection generates a relation that includes only a subset of a rela-

tion’s attributes. The projection operator may remove, perform calculations on,

and/or change the order of attributes in the resulting relation. It is important

to note that projection, like all relational algebra operators, yields a set of tuples

from which any duplicates have been removed. For simplicity, the brief overview

in this section deals only with relational algebra’s set semantics. The algebraic

operations described here are also defined (with different semantics) for bags, or

multisets, which may contain duplicates.

Table 2.3: Example of Selection and Projection in Relational

Algebra, Corresponding to the Relational Algebra Expression:

πDeptId,DeptName(σCollege=′COSAM ′(DEPARTMENT))

DeptId DeptName

MATH Mathematics

BIO Biology

In relational algebra, set union and set difference borrow behavior from their

counterparts in set theory, with the constraint that the two relations involved

share the same schema, that is: the two relations must have the same degree

(number of attributes) and each matching pair of attributes must be from the

same domain (i.e. same data type.) This requirement of union-compatibility

ensures that these operators can be applied to sets of tuples in a well-defined

way.

In addition to the four relational algebra operators described above, the fifth

primitive operator, Cartesian product(×) illustrated in Table 2.4, takes two rela-

tions as input and produces a new relation that combines tuples from the input

8

relations by concatenating the tuples pairwise in every possible way. Cartesian

product forms the basis of the derived join operator (on) which pairs tuples from

two relations based on a comparison of values within the tuples. Several join

variations are defined for convenience, all based on the combination of Cartesian

product with the primitive selection and/or projection operators. Join variants

include natural join, which pairs tuples based on the equivalence of attributes with

the same name and applies an implicit projection to remove duplicate columns;

theta join, which pairs tuples based on some arbitrary condition; and semi-join,

which pairs tuples, then projects attributes from just one of the input relations.

Each of these joins operates on two relations and produces a subset of the full

Cartesian product of the two input relations.

Table 2.4: Cartesian Product of STUDENT and DEPARTMENT: STUDENT ×

DEPARTMENT

StudentId FirstName LastName DeptId DateEnrolled DeptId College DeptName

001 Samuele Naldrett CSC 2017-05-06 CSC CENG Computer Science

002 Dario Stiger BIO 2018-12-18 CSC CENG Computer Science

003 Minda Hallick CSC 2018-07-13 CSC CENG Computer Science

001 Samuele Naldrett CSC 2017-05-06 MATH COSAM Mathematics

002 Dario Stiger BIO 2018-12-18 MATH COSAM Mathematics

003 Minda Hallick CSC 2018-07-13 MATH COSAM Mathematics

001 Samuele Naldrett CSC 2017-05-06 BIO COSAM Biology

002 Dario Stiger BIO 2018-12-18 BIO COSAM Biology

003 Minda Hallick CSC 2018-07-13 BIO COSAM Biology

A number of additional derived relational algebra operators are also defined.

These include: set intersection, relation division, anti-join, and outer join. These

represent common operations that, when expressed in terms of primitive relation

algebra operators, are complex and difficult to readily manipulate. The definition

9

Table 2.5: Result of a Natural Join Between Relations STU-

DENT and DEPARTMENT with a Further Selection and Projec-

tion Applied, Corresponding to the Relational Algebra Expression:

πStudentId,LastName,DeptName(σCollege=′CENG′(STUDENT ./ DEPARTMENT))

StudentId LastName DeptName

001 Naldrett Computer Science

003 Hallick Computer Science

of these derived operators allows for a more convenient and compact representa-

tion, and these operators (with the exception of division) correspond directly to

language features available in SQL.

Finally, there are several operators that depart from the set-theoretic founda-

tions of relational algebra. These operators correspond to features found in the

SQL implementation, which offers support for grouping and aggregation, bag (or

multiset) semantics, and the notion of result ordering. The “extended” relational

algebra operators include group by (γ), duplicate elimination (δ), and sorting

(τ).

Relational algebra is a powerful, formally defined query language used to

manipulate data represented according to the structure and constraints defined

by the relational model. The syntax of the SQL programming language closely

follows the basic operators defined by relational algebra.

In practice, Relational Database Management Systems (RDBMS) parse SQL

queries into trees of relational algebra operators. Algebraic laws and equivalence

rules allow databases to find efficient logical query plans. Logical query plans, also

typically represented as trees of relational algebra operators, form the basis for the

10

physical plan ultimately used to execute a given query. A physical execution plan

specifies an implementation for each relational algebra operator in a logical plan.

For example, a join operation might be performed using a simple nested loop.

Or, the RDBMS might choose a hash or sort-merge join implementation. Given

the tight link between relational theory and practical database implementations,

relational algebra is an important topic in introductory database courses.

2.3 The Structured Query Language

The Structured Query Language (SQL) is a special-purpose declarative language

that builds on concepts from the relational model and relational algebra. Intro-

duced in the early 1970’s, today SQL is widely used as a core component of many

software applications and it endures as a fundamental and ubiquitous tool for

data manipulation.

In contrast to typical imperative or procedural languages (such as C, Python

or Java) SQL statements specify desired output without describing exactly how

that output should be produced. This declarative aspect of SQL requires a

problem-solving process that can feel unfamiliar to novice programmers. The ba-

sic syntax of SQL is approachable, but the language’s declarative nature requires

new thought processes for those who are accustomed to procedural or functional

styles of problem solving. SQL’s SELECT statement corresponds closely to the re-

lational algebra concepts described in the previous section. A SELECT statement

consists of a number of clauses (many of which are optional) that are assembled

in a defined order to represent column projection, joins between tables (relations),

and selection filters. As a simple illustration, consider the following SQL SELECT

statement:

11

SELECT DISTINCT StudentId, LastName, DeptName

FROM Student NATURAL JOIN Department

WHERE College = 'CENG'

This query corresponds to the relational algebra expression from Table 2.5:

πStudentId,LastName,DeptName(σCollege=′CENG′(STUDENT ./ DEPARTMENT))

Generalizing from this simple example, the SELECT clause lists columns to be

projected. The FROM clause identifies a query’s subject table(s) and joins. Finally,

the WHERE clause specifies conditions for row selection. Construction of a simple

SQL query typically involves the following process:

1. Choose the table(s) from which data should be retrieved

2. If two or more tables are involved, determine the conditions to be used to

pair tuples from multiple tables

3. Construct a boolean expression to filter for row(s) of interest

4. Choose column values to be included in the result table

After following these steps, it is entirely possible to arrive at a SQL command

that is syntactically correct and produces correct results for certain input data,

but which fails to be a generally valid solution to the problem at hand. As a

simple example, given the sample student data in Table 2.2, the following query

returns IDs, first and last name of all students enrolled in the CSC department:

SELECT StudentId, FirstName, LastName

FROM Student

WHERE StudentId = '001' OR StudentId = '003'

This query is syntactically correct and returns apparently correct data in this

specific case. However, the above query is clearly not a generally valid solution to

12

the stated information request, since it fails to include CSC students not present

in the sample table. A valid query would apply selection criteria on the DeptId

column rather than the StudentId column. From a different perspective, it is

often the case that, for a given SQL problem, a number of equally valid, yet

syntactically dissimilar, solutions exist. The ability to correctly interpret the

semantics of an SQL statement can be difficult for novice students to acquire,

but it is an essential skill for any student who wishes to effectively apply SQL to

all manner of database tasks.

To illustrate the steps required to construct advanced SQL queries and to

highlight one of the possible pitfalls, consider the task of listing the IDs and

names of all departments in which no students enrolled during calendar year

2017. Based on the sample DEPARTMENT and STUDENT relation instances in Tables

2.1 and 2.2, this task might be decomposed as follows:

1. Construct a query to list all departments in which at least one student did

enroll during 2017, then

2. List all departments, excluding those returned by the above query.

A list of all departments in which at least one student did enroll during 2017

can be computed in SQL using the following straightforward query:

SELECT DISTINCT d.DeptId

FROM Department d JOIN Student s ON d.DeptId = s.DeptId

WHERE DateEnrolled >= '2017-01-01'

AND DateEnrolled <= '2017-12-31'

13

This query may then be used as a building block to produce the requested

information, namely: the IDs and names of departments without student enroll-

ments in 2017:

SELECT DeptId, DeptName

FROM Department

WHERE DeptId NOT IN (

SELECT DISTINCT d.DeptId

FROM Department d JOIN Student s ON d.DeptId = s.DeptId

WHERE DateEnrolled >= '2017-01-01'

AND DateEnrolled <= '2017-12-31'

)

There are several alternate approaches to this problem that are equally cor-

rect. Importantly, there are also approaches to this task that seem reasonable on

the surface but which represent fundamental misunderstandings of SQL concepts.

The following is an example of one such flawed attempt:

SELECT DISTINCT d.DeptId

FROM Department d JOIN Student s ON d.DeptId = s.DeptId

WHERE NOT(DateEnrolled >= '2017-01-01'

AND DateEnrolled <= '2017-12-31')

In this (incorrect) example, the row filtering condition that was used in the

previous query has simply been negated. While this may seem like a reasonable

solution at a glance, the join between Department and Student will cause De-

partments without any students (such as Mathematics in our example data) to

be incorrectly excluded. This behavior follows from the Cartesian product that

underlies the join operation in relational algebra and SQL. This example high-

lights one case where a syntactically correct query may, in limited cases, return

correct results. In this example, both queries above would return the same (cor-

rect) result if the following conditions hold: at least one student record exists

14

for every department, and all student enrollment dates within each department

either fall entirely within, or entirely outside the date range. Subtleties such as

this are present throughout the SQL language, and are the source of considerable

student confusion.

Extensive research has been conducted in the areas of SQL semantics, valid-

ity, and quality. The breadth of this research underscores the complexity and

intricacies of SQL and makes clear the need to carefully evaluate the ways in

which SQL is taught and learned. Courses that cover SQL, including the one on

which we base this thesis, typically introduce both the basic syntax of SQL as

well as the language’s more nuanced features and the ways in which these features

combine to form complex queries.

2.4 Teaching Relational Algebra and SQL

The database course that is the subject of this thesis covers the relational model,

relational algebra, SQL, transactions, and Java Database Connectivity (JDBC).

This quarter-long (10 week) course does not extensively cover topics such as the

Entity-Relationship (E-R) model or database normalization, which are typically

included in a semester-length database course. After completing the course, stu-

dents may elect to take a second quarter-long course that introduces E-R model-

ing, normalization, and other topics related to the design and implementation of

database applications. Students also have the opportunity to take another course

that covers advanced database system internals and implementation. The study

described in this thesis is focused exclusively on the first, introductory course.

This introductory course is typically taken by third- or fourth-year majors

in Computer Science and Software Engineering, or students from other STEM

15

fields pursuing a concentration in Data Science. All students who take the course

are required to have previously taken courses in discrete math, fundamental data

structures, and basic procedural programming.

The course’s coverage spans SQL’s main sublanguages, beginning with the

Data Definition Language (DDL), followed by the Data Control Language (DCL),

the Data Manipulation Language (DML), the Data Query Language (DQL),

and finally the Transaction Control Language (TCL). A significant potion of the

course’s SQL coverage centers on the DQL SELECT statement, beginning with the

SELECT, FROM, and WHERE clauses. The course then moves to more advanced con-

cepts including grouping (GROUP BY clause), grouping with restriction (HAVING

clause), and nested queries. The course focuses on ANSI-standard SQL syntax

included in the SQL-92 specification. We also introduce several recently incorpo-

rated and widely supported language features, including window functions and

common table expressions (using the WITH clause.) Vendor-specific extensions to

standard SQL syntax are explicitly not introduced, except where they are useful

for comparison with standard language features.

To support the learning process, assignments and lab exercises are designed

to progressively build on one another. Initial assignments introduce core SQL

skills, later assignments combine concepts in increasingly complex ways. This

scaffolding process is first conducted with relational algebra concepts, then the

SQL language is gradually introduced in a similar scaffolded manner. Following

a student-centered learning style, the course presents various alternative methods

and different language syntax that can be used to solve problems in equivalent

ways. It is up to the students to choose the problem solving approaches that

they find most natural. The course specifically avoids tool-driven as well as rigid,

template-based, approaches to SQL query design.

16

During the course, all students complete the same sequence of lab assign-

ments. An initial lab assignment requires students to work in pairs to develop

an application to run queries over tabular data without the aid of a database

or SQL. Students then work individually to complete a second lab focused on

SQL DDL (CREATE TABLE and ALTER TABLE) and relational constraints. In the

third lab, students again work individually on a lab that covers basic data ma-

nipulation using SQL DML. Following this, lab assignments shift to SQL query

tasks, which are the focus of this thesis. Labs four, five, and six consist of 30-40

exercises, each of which is an English information request. Working individu-

ally, students are required to translate these information requests into valid SQL

SELECT queries. Each of these three labs focuses on a different set of SQL con-

cepts: table joins & selection criteria, grouping & aggregation, and finally nested

SQL. The seventh, and final, lab asks students to work in small teams to build a

Java application that uses the Java Database Connectivity (JDBC) API to inter-

act with a database. Lab assignments are distributed to students in a sequential

way. In other words, the lab two assignment is typically made available just after

the submission deadline for the first lab. Students are allowed approximately one

week to complete each lab assignment and are free to use any available resources,

including class notes, textbooks, and online resources. The lab assignments we

study in this thesis are strictly individual efforts; all solutions must be formulated

without code sharing between students.

We perform course assessment via traditional midterm and final examina-

tions. Both are in-class, paper-and-pencil exams designed to evaluate students’

understanding of core course material. Each exam requires students to both write

and interpret relational algebra expressions and SQL code.

17

This thesis concentrates on three lab assignments (labs four through six, men-

tioned above) that involve the translation of English information requests into

SQL queries. In the sections that follow, these labs are referred to as labs A, B,

and C, which correspond to numbered labs four, five, and six, respectively.

2.5 Related Work

The work described in this thesis builds on previous research in the areas of SQL

concept categorization and error classification by Brass and Goldberg [4] [3] and

Taipalus et al. [36], interactive environments designed as instructional aids, and

specifically, interactive database instruction environments. When analyzing SQL

query concepts and errors, we apply the categorization taxonomy described by

Taipalus et al. in [36], and we compare our analysis to the analysis presented by

Taipalus et al. in [35] and Ahadi et al. [2].

Our work adds to this research a detailed student-centric analysis of the rela-

tive difficulty of important SQL concepts, particularly the various combinations

of concepts. We also study a much larger and more varied collection of SQL

exercises: approximately 150 exercises in total, compared to 15 exercises studied

by Taipalus et al. [35] and seven SQL exercises analyzed by Ahadi et al. [2].

This variety offers a richer dataset for analysis, giving us the opportunity to ex-

tract statistics related to the interactions of multiple concepts. As described in

previous studies, relational concepts (and corresponding SQL language features)

often combine ways that students find particularly difficult to understand, even

when the concepts alone are readily understood.

18

2.5.1 SQL Concepts and Common Errors

Recent work by Taipalus et al. [36] identifies fundamental SQL query concepts

and describes a unified error classification framework. Based on a large empiri-

cal study, the authors identify the most prevalent errors and misunderstandings

encountered by students, and further determine the types of queries that invite

certain errors. The authors describe three categories of SQL errors: syntax er-

rors, semantic errors, and logical errors. Statements that are invalid according

to the SQL specification are considered syntax errors, and the authors categorize

these using a DBMS-independent classification. Valid statements that produce

incorrect results are categorized as either semantic or logical errors. Queries that

are incorrect regardless of the information request are considered to be semantic

errors. Logical errors are present in those queries that are both syntactically

valid and produce a correct result for at least one information request, but fail to

produce the intended results for a given information request. With this classifica-

tion of common errors and description of the the types of exercises that typically

cause students to encounter certain errors, Taipalus et al. proceed to describe

effective methods for the development of course exercises that encourage students

to learn how to avoid common pitfalls.

In a follow-up study [35], Taipalus et al. consider types of errors that, once

encountered, are most difficult for students to fix. Using the same concept and

error classification frameworks proposed in their earlier work [36], Taipalus et al.

identify classes of errors that occur across multiple types of exercises, and pinpoint

certain errors with which many students struggle. Logical errors, in particular,

are a significant source of student confusion. Specifically, simple but subtle errors

related to missing join conditions or incorrect column choices in selection or

19

projection are highlighted as errors that are both commonly encountered and

difficult for students to identify and fix. The authors point out that syntax

errors, though common, are relatively easy for students to find and fix since they

result in immediate DBMS error messages. A clear picture of less obvious types

of errors serves as a useful guide for exercise design, and offers a valuable window

into the student problem-solving process.

2.5.2 SQL Semantics and Correctness

In [3], Brass and Goldberg introduce a method to check consistency of an SQL

query. With this approach, it becomes possible to detect certain runtime errors

which can easily go unnoticed. The straightforward, declarative syntax of SQL

often masks errors that are only detectable with the benefit of expert SQL knowl-

edge, or when varying the underlying data referenced by a given query. In [4],

the same authors build on their original work, enumerating types of semantic

errors in SQL. In doing so, they provide a useful collection of common mistakes

and misunderstandings faced by students learning SQL. The empirical analysis

described in this work makes use of this baseline list of errors. In this work we

experimentally confirm that the list of common errors described by Brass and

Goldberg in [4] is, in fact, a representation of the types of errors encountered

by students learning SQL. This class of errors represents areas of particular sub-

tlety in the language. In addition to these subtle semantic errors, we expand our

inquiry to include syntax errors, which are comparative simple and sometimes

obvious, but can still vex students attempting to learn SQL. We seek to under-

stand how best to prepare instructional material and practice exercises in a way

that clearly illuminates common syntactic and semantic errors. Ultimately, we

20

hope to define techniques that demonstrably help students learn to avoid these

errors.

In an attempt to bridge the gap between the formality of relational theory

and its implementation in SQL, Guagliardo et al. [16] run experiments on a large

collection of generated queries and database instances to arrive at a description

of “real-life” SQL queries. In doing so, this work provides a useful tool for

programmers who wish to understand the behavior of SQL queries. This work also

provides a valuable experimental basis for questions about query correctness and

the subtleties present in SQL implementations. Subtleties, such as the handling

of null values and bag versus set semantics, can be a source of confusion for those

attempting to learn SQL.

2.5.3 Query Similarity

In our observations of the ways in which students independently solve problems,

we attempt to cluster students based on similarity of queries used among groups of

students. This permits identification of certain problem-solving patterns shared

by more than one student. To perform this clustering of queries, we analyze

queries for their structural similarity.

We base our initial analysis of query similarity on simple rules that flow from

the theoretical underpinnings of SQL as described by Sagiv et al. in [31]. These

rules allow certain expressions to be readily matched with equivalent expressions

that use different operators. We also leverage research by Kul et al. [23] focused

on analysis of high-volume database access logs. In this work, the authors describe

a method for clustering similar queries as a first step towards extracting broad

patterns and thus developing a better understanding of large database logs. With

21

this analysis of query clustering, the authors provide a better basis for database

performance tuning, security auditing, and benchmark design. Our study of the

SQL learning process has at its core a similar collection of widely varying queries

from multiple sources. Applying the clustering techniques from Hul et al. [23],

in this thesis we seek to extract problem solving patterns that exist in students’

lab work.

Directly addressing questions of query correctness and equivalence, Chu et

al. describe COSETTE, an automated prover for determining whether two SQL

queries are truly equivalent [9]. The authors demonstrate that COSETTE is

able to decide equivalence for a large subset of SQL queries. In cases where the

tool detects query inequivalence, COSETTE is further able to produce data that

serves as a counterexample. This capability, integrated into an interactive tool,

clearly highlights cases where a query returns correct results for a given database

instance, but fails to correctly solve the general question. Cases such as this

often represent subtle misunderstandings on the part of students learning SQL.

The ability to automatically identify these cases would likely improve students’

understanding of the complex features of SQL.

With a similar focus on the correctness of SQL statements, Hsu et al. are

among many to have focused on the problem of rewriting queries while maintain-

ing semantic correctness [21]. Adding a concrete implementation and empirical

analysis to the question of query equivalence, Chu et al. describe a tool named

HoTTSQL [10] that is able to determine, within a constrained class of SQL

queries, whether or not two queries are equivalent to one another. The authors

note that the general problem of determining query equivalence is undecidable.

This highlights the difficulty of the task of determining whether a given query is

a truly valid solution to a particular problem. It is therefore easy to understand

22

why novice students faced with the task of formulating a valid solution for a

complex task can be overwhelmed by the intricacies and features of SQL.

2.5.4 SQL Testing and Quality Metrics

Traditional research into automated testing and test coverage focuses mainly on

applications written in imperative or structured programming languages. Some-

what less emphasis has been paid to automated testing for declarative languages

such as SQL, particularly in the typical case where SQL is embedded within an

application that is written in a procedural language, such as Java or Python. In

[34], Suarez-Cabal et al. describe coverage measurements specifically designed

to measure SQL queries. Furthermore, the authors present testing techniques to

ensure high test coverage of query code, especially SQL embedded within a larger

application.

In a similar way, Veanes et al. describe methods for the generation of test

data and SQL query parameters to fully exercise given test conditions [37]. To

do so, the authors transform the problem of test data generation into one of

satisfiability. The authors integrate their approach into the database testing

framework exposed by the Visual Studio IDE.

When learning SQL, students benefit from a complete picture of eventual

uses of SQL. In particular, it is important for students to gain an understanding

of the mechanisms by which a given SQL query can be thoroughly tested for

validity. We seek to find out how best to guide a student’s problem-solving

process, so that the student constructs SQL queries with the same care and eye

toward testability as she would write any application code. In particular, our

study aims to reveal how the building blocks of relational algebra operators and

23

corresponding SQL features can be most effectively taught, especially in cases

where there is a need to layer concepts in complex ways. We hypothesize that

students who firmly understand basic relational algebra building blocks will be

better able to combine these concepts in a modular way to develop solutions to

complex information requests.

2.5.5 Interactive Lab Environments

Significant research effort has been applied to the design and implementation of

effective interactive environments to teach introductory programming concepts.

Such environments have been used to teach a wide range of topics, including

traditional procedural programming [18], test driven development [19], as well as

SQL [25]. In this thesis, we adopt many proven ideas from this previous work,

particularly the use of immediate, automatic feedback.

Higgins et al. describe a Computer Based Assessment (CBA) system, known

as CourseMarker [18], which is used to teach introductory Java programming at

the University of Nottingham. The design of CourseMarker emphasizes free-form

programming exercises, in contrast to similar systems focused narrowly on simple

text-based or multiple choice exercises. The CourseMarker system also provides

immediate feedback to students, which is shown by the study to clearly benefit

students. In this thesis, we adopt many of these same proven ideas to build an

interactive tool to allow students to solve SQL exercises rather than procedural

programming problems.

With an approach focused more intently on performance assessment and stu-

dent perception, Hilton and Janzen [19] describe an environment to aid in intro-

ductory programming instruction. The authors focus their study on test-driven

24

development (TDD) and related learning processes. They design an interactive

environment named WebIDE that encourages students to use TDD methods while

solving programming problems related to array handling. The study finds that

students who complete assignments using WebIDE, a custom “intelligent tutor-

ing system,” performed better on objective assessments and have a subjectively

better learning experience.

2.5.6 Database Lab Environments

In the specific area of database courses, Mitrovic presents a SQL-specific intel-

ligent tutoring system, known as SQL-Tutor [25], designed to teach the SQL

programming language. The authors explore how well this interactive environ-

ment supports student learning by conducting three evaluation studies. First,

the authors investigate a student modeling approach known as Constraint-Based

Modeling (CBM) [26]. This approach is similar to the work described by Hilton

and Janzen in [19]. In both cases, the authors evaluate the usefulness of their

systems (SQL-Tutor and WebIDE) based on subjective student assessments. Ad-

ditionally, the authors use SQL-Tutor to build long-term models of student knowl-

edge. These models then drive adaptive problem selection, aimed to improve the

student learning process. This last line of inquiry, in particular, forms part of

the basis for the longitudinal studies conducted in the study of the SQL learning

process described in this thesis.

In [6], Cagliero et al. describe the design and construction of a tool intended

to assist teaching assistants tasked with supporting practical lab work in database

courses. This application provides real-time data to instructors and teaching as-

sistants, indicating which students or student teams are struggling to solve certain

problems. The focus of the research is on the identification of students who could

25

benefit from immediate help during an in-person lab. The authors also describe

the possibility of later data analysis to determine whether or not the interven-

tions were successful, as well as to identify common misunderstandings. We do

not, in this thesis, focus immediately on the real-time intervention possibilities.

However, the lab tool described in this thesis does permit such investigations in

the future.

2.5.7 Concept Inventory Construction and Evaluation

Drawing from prior research related to instructional effectiveness in the fields of

physics, circuits, and engineering [14], recent work by Caceffo et al. describes

the application of concept inventories to teaching and assessment in the field

of computer science [5]. Traditionally, a concept inventory (CI) is a carefully

constructed multiple-choice test that aims to thoroughly cover a given subject

area. Each question that appears on a concept inventory is designed, based on

careful research, to measure students’ understanding of specific concepts.

Saarinen et. al. describe the difficult and time-consuming processes required

to create an effective concept inventory in [29]. To address this, the authors

present a tool that combines “classsourcing” with machine learning to produce

sets of questions optimized to identify study misconceptions. The authors further

describe how these question sets can be used to construct effective, comprehensive

concept inventories. The resulting process, called Adaptive Tool-Driven Concep-

tion Generation, is validated in the context of problem sets related to array

handling in Java. This study confirms that the generated problems are similar to

those that would be created by a lengthy expert-driven process. In this thesis, we

rely on expert-created SQL problem sets. Our study aims to confirm that these

problem sets are complete, with no significant gaps between concepts or inade-

26

quate coverage of certain SQL concepts. In the future, we intend to explore the

notion of class-sourcing SQL exercises and automatic construction and validation

of a concept inventory for SQL queries.

27

3 Tool Implementation

To investigate the student learning process, we built a custom application, re-

ferred to throughout this thesis as “Lab 365”. We used this application to gather

data related to the student problem solving process within the context of normal

course lab assignments. This tool allowed passive collection of data that would

have been difficult to gather via surveys, interviews, or similar research instru-

ments. The detailed data we collected provide a fine-grained, unfiltered view of

the student problem-solving process. As noted by Fincher in [15], a rich data set,

such as ours, allows analysis beyond what could be accomplished through the

use of researcher-distant methods, such as questionnaires, surveys, or interviews.

The data-gathering tool we constructed was specifically designed to support in-

vestigations that closely analyze the student problem solving process.

3.1 Application Overview

We constructed our data-gathering tool as a web application that can be accessed

by students using any modern web browser. The user interface consists of stan-

dard HTML/CSS/JavaScript layout and controls. We incorporated standard vi-

sual components from the Bootstrap [24] and Webix [33] user interface libraries.

Server side application logic was implemented in Java using the Spring Boot

framework [28], specifically: the framework’s Model-View-Controller (MVC) li-

brary, authentication and authorization API, and object-relational mapping ca-

pabilities, which are based on the Java Persistence Architecture (JPA) API. For

data storage, we use the MySQL RDBMS. All server-side components are hosted

via Amazon Web Services (AWS).

28

Lab 365 stores application configuration, user accounts, and student activity

logs in a single MySQL database, depicted as an Entity-Relationship diagram in

Figure 3.1. In addition, the tool connects to several separate lab databases against

which student queries are executed. These MySQL lab databases are created and

populated manually. All students have a read-only view of the same shared lab

databases. Details about the content and structure of these lab databases can be

found in Section 4.3.1 and Appendix B.

����������	

���������	
��

�������������������	
��

���������������������

��������������������

�������� !��	
""�

�����#�$���� !��	
""�

��������#����� !��	
�%&�

�����

������������

���������	
��

'������������������

���������������������

��������������������

�������� !��	
""�

��������#����� !��	
""�

�����������������

��������#�����������	
��

�����

������	�����

���������	
��

�������� !��	
""�

�����#�����������	
��

���������������������

��������������������

�(����'����#���������

�(����'���)�#����������

��������#����� !��	
�%&�

�����������������

�����

������	����������

���������	
��

�������� !��	
""�

��'����������	
��

��������#����� !��	%�*+�

�#���#��������	,,�

���������������������

��������������������

����'������������ !��	
""�

�-��.��/����� !��	,+0&%�

��������-�(�����������

���#1��2����������������	,�

�����

������	���������������������	

��'��������������������������	
��

�#������������������	
��

�����

����

���������	
��

���-#���$���� !��	
""�

�����

��������������

���������	
��

��������������	
��

������������ !��	
""�

���������'������������

�#���������	,�

���������������������

�#1��#����������	
��

�#������#����������	
��

�2����#��(���#���#������	,,�

�2����#������������� !��	,�
%�

��������/��34����5�

�$�/���#����� ���3	,*6+�

�����

���

���������	
��

������������ !��	
""�

)������������� !��	
""�

������������� !��	
""�

�����#�����������	
��

���1#����2��������	,�

���#�����#�.������	,�

���#�����2��������	,�

���'�������	,�

�#����������������	,�

�����

��������

��������������	
��

�#������������	
��

�����

Figure 3.1: Lab 365 Application Database, Entity-Relationship Diagram

29

3.2 Instructor Features

Administrative screens, available only to course instructors, facilitate setup and

review of lab assignments and the SQL exercises that comprise each lab. For each

assignment, the instructor must specify a name, description, start/due dates,

and a list of individual SQL exercises. Each SQL exercise consists of a label, an

English-language information request, and a single “Check SQL” statement that

is used to produce a result table for comparison with user submissions. The SQL

concept(s) present in each exercise may optionally be provided to allow analysis

on a concept-level basis, as we do in Chapter 5. Figure 3.2 depicts the screen an

instructor uses to create or modify a lab assignment.

Figure 3.2: Lab 365: Lab Assignment Setup Screen; Available Only to Instructors

The Lab 365 application provides, for course instructors only, a simple dash-

board that displays charts which offer a broad view of student progress for each

lab assignment, as well as each SQL exercise. As shown in the example in Figure

30

3.3, a bar chart indicates the number of students who have attempted each exer-

cise (light-grey bars) as well as a count of students who have submitted a correct

response (green bars.)

Figure 3.3: Lab 365: Instructor Home Screen; Displays High-Level Student
Progress for Each Lab Exercise

3.3 User Interface for Students

After successful authentication, users of the Lab 365 application are first pre-

sented with a home screen that lists available lab assignments, shown in Figure

3.4. This listing includes a brief description of each assignment, the number of

exercises in each assignment, and the number of exercises the student has suc-

cessfully completed thus far within each lab assignment. After choosing a lab

assignment, the system presents the student with a single screen (depicted in

figure 3.5) that displays, on the left side, all exercises within the lab assignment.

Clicking on an exercise displays an English information request, along with an

31

Figure 3.4: Lab 365: User Home Screen; Lists Available Lab Assignments

editor panel into which SQL commands may be typed. Three action buttons are

available:

1. Run SQL - execute the SQL statement currently in the editor panel, re-

turning either the result table or an error message from the RDBMS. This

feature is intended to be used to run SQL statements that do not fully

solve a problem. Example uses include: testing subqueries in isolation, or

inspecting the contents of a specific table.

2. Check - execute a full SQL statement and compare the result of the current

SQL statement to the expected result table. Displays the results from the

student’s SQL query along with a “Correct” or “Incorrect” indicator.

3. Show Expected Result - Display the expected result table

32

The results for each SQL statement are displayed in tabular form in a collapsible

right-hand panel. Any errors from the underlying RDBMS, including syntax

errors, are echoed directly to the user, as shown in Figure 3.6.

Figure 3.5: Lab 365: Main Lab Exercise Screen, User’s View

Students are free to work on lab exercises in any order and at any time up

to a pre-defined assignment due date. For most exercises, the “Show Expected

Results” button is available, except as noted in Appendix D, and this feature

may be accessed at any time). As mentioned by Taipalus in [36], the ability to

view expected results does not accurately mimic real-world scenarios in which

developers are often required to develop correct SQL queries without previous

knowledge of expected results. We provide this capability to permit ready com-

parison with previous studies of SQL learning. We intend in the future to conduct

experiments related to the availability of result tables.

The application determines “correctness” based on a simple comparison of

result tables. This comparison does not in every case mean that a student’s sub-

mitted query represents a generally valid response to an information request. The

33

Figure 3.6: Lab 365: SQL Syntax Error Display, User’s View

submitted query may correctly satisfy the request for a single database instance,

but may fail to produce valid results if data is added, removed, or modified.

Or, the query may incorrectly hard-code certain values that allow the query to

yield correct results, but again would cause the query to fail in the presence of

different data. In extreme cases, students may use static values to produce a

correct-seeming result table without actually solving the problem at hand (for

example, a SELECT with literal values and no WHERE clause). These, and other,

error types are addressed through manual grading, and are discussed further in

Section 4.5. The inability of the Lab 365 application to automatically detect

these errors and provide immediate feedback represents a known limitation in

the system, because it may offer false assurance to students that their solution

is correct. Students are made aware of this before beginning to use the system

and are cautioned that they should carefully review their final submissions for

logical errors. We plan to address this limitation in a future release, using some

combination of multi-instance or “hidden” tests and automatic error classification

(which is also described as a future goal the the Taipalus study [36]).

34

The Lab 365 application records every student attempt (success or error) and

stores student progress and SQL edit buffers across sessions. After logging out,

a student may return at any time to continue work, picking up exactly where

he/she left off. In addition to the valuable data recorded by the application for

analysis by instructors, students appreciate the convenient, user-friendly interface

that allows them to complete lab assignments on their own schedule, without the

need to install or learn specialized software.

35

4 Methodology

In the introductory database course on which this thesis is based, students learn

the principles of modern relational databases. Specifically, the course’s learning

objectives indicate that students should (after completing the course) be able to:

• Describe and apply the principles of the relational model and relational

algebra.

• Create a relational database using SQL’s Data Definition Language (DDL).

• Formulate SQL statements for data manipulation.

• Formulate information retrieval statements using relational algebra and

SQL, including the primitive operations of selection, projection, Cartesian

product, set union, and set difference; as well as derived operations such as

joins.

• Design and implement a Java-based application that interacts with a rela-

tional database using the JDBC API.

• Describe, at a high level, the internal organization of a DBMS, including

key subsystems and their purpose.

Much of the course’s emphasis relates to the formulation of valid SQL statements

to solve data manipulation and query tasks; first in isolation and then in the con-

text of a complete application that includes embedded SQL statements. To this

end, the course progressively and thoroughly introduces SQL syntax and seman-

tics. Lab exercises are designed to give students practical experience applying

SQL concepts to real-world information retrieval tasks, and to validate students’

abilities to do so. Along the way, certain concepts invariably prove more difficult

36

than others. Although experience as an instructor provides some intuitive insight

into the relative difficulty of SQL concepts, quantitative confirmation is required.

Fundamentally, this study aims to answer the question: “What database query

concepts, or combinations thereof, trouble students the most?”

We concentrate our study on the problem-solving steps taken by students

who are faced with the task of transforming English-language information re-

quests into syntactically and logically valid SQL queries. Specifically, we pose

the following research questions:

1. What are the most difficult SQL concepts, or combinations of concepts, to

master?

2. Among students who attempted a given query problem and were unsuc-

cessful, what are the most common terminal errors?

3. Which SQL syntax errors require the most number of attempts for students

to resolve?

4. Among those students who are unable to successfully solve a given problem,

what errors are encountered that are not also encountered by those students

who successfully solve the same problem?

4.1 Overview

We conducted our experiments over the course of two academic quarters across

four sections of an introductory database course taught by two different instruc-

tors. The four cohorts are summarized in Table 4.1. Identical sets of lab exercises

were assigned to all four cohorts, without any modification between academic

quarters or instructors. All enrolled students were given an opportunity to review

37

an Informed Consent form (Appendix A.1). The “Study Participants” column

in the summary table shows the number of students who chose to sign the form

and participate in the study described in this thesis.

Table 4.1: Course Enrollment and Study Participants

Cohort Quarter Instructor Enrollment Study Participants

1 Winter 2019 A 31 26

2 Spring 2019 A 35 30

3 Spring 2019 B 37 32

4 Spring 2019 B 32 26

4.2 Experimental Design

The primary quantitative experiment described in this thesis uses repeated mea-

sures design [13] to compare student performance on multiple SQL lab exercises

over time. In addition, we used simple mean and variance comparisons to com-

pare lab assignments and, by extension, to compare student approaches to the

SQL concepts that are the focus of each lab assignment. As discussed in Section

2.4, each lab assignment consists of 30-40 exercises centered around a particular

set of SQL language features. Specifically, the first lab assignment focuses on

joins and filtering, a second lab emphasizes grouping and aggregation, and the

third lab covers nested queries. Lab assignments build on one another, combining

concepts in progressively more complex ways.

Since our experiment uses repeated measures design, we introduce the possi-

bility of effects related to the order in which students complete lab exercises. A

student is free to complete exercises within a given lab in whatever order he or

38

she chooses, raising the possibility that fatigue or other factors may play a role

in student performance. We can, however, observe the order in which students

work on lab exercises. At a broad level, we control the order in which entire labs

are assigned. In our study, students completed a full assignment related to joins

and filtering expressions before beginning work on exercises related to grouping

and nested SQL.

4.3 Lab Assignments and Query Types

We collected data to support this via a custom web-based application (described

in Chapter 3). This lab tool is used by students to solve lab exercises assigned

during normal course lab activities. This application captured student interac-

tions with the course database, including all attempts to solve problems, as well

as errors encountered. The study includes longitudinal data; we recorded student

lab activity over time to allow an individual’s learning progress to be analyzed and

compared to that of other students. By collecting fine-grained detail consisting

of all student attempts, rather than conducting traditional surveys or analyzing

final responses only, we were able to perform data analysis that is much closer to

the student, as described by Fincher et al. [15].

Our sample includes students enrolled in selected sections of an introductory

database course. Student enrollment decisions were made with no prior knowl-

edge of this study. Every student was given the opportunity to review an Informed

Consent form (see Appendix A.1.) Students could opt out of the study altogether

or at any point during the study. In the four sections that participated in this

study, approximately 80% of students give their informed consent. No students

chose to discontinue participation while the study was ongoing.

39

4.3.1 Query Types and SQL Concepts

Lab exercises are based on nine different databases containing hand-crafted data.

Each database follows a common structural theme, as outlined in Table 4.2.

Table 4.2: Lab Databases Used in this Study

Database Type Description

AIRLINES Graph Information about airlines and flights be-

tween 100 different airports

BAKERY OLTP Sales detail for a small, fictitious bakery

CARS Normalized Statistics about 406 car models produced

worldwide between 1970 and 1982

CSU Normalized

OLAP

Historical enrollment and fee data from

the California State University 23-campus

system

INN OLTP Reservation data for a fictional Bed &

Breakfast

KATZENJAMMER Normalized Data related to the musical career of pop

band Kaztenjammer from Norway

MARATHON Universal

Table

Results from a half-marathon in New Eng-

land

STUDENTS Normalized Students, classrooms, and teachers at a

small, fictitious elementary school

WINE Partially

Normalized

Ratings of a variety of wines produced in

California

40

Appendix B contains full descriptions of the nine lab databases used in this

study. These lab databases form the basis for all lab assignments. A single

lab assignment consists of between five and eight exercises for each database.

Within a lab assignment, exercises are arranged in increasing order of perceived

difficulty. For example, an exercise labeled BAKERY-1 is intended to be easiest

exercise within the BAKERY database for that lab assignment, while BAKERY-

2 requires a more complex solution. Query concepts are repeated across mul-

tiple databases. For instance, the multi-table join concept might appear in

BAKERY-3, CSU-4, and AIRLINES-2. In this way, students gain practice apply-

ing SQL query concepts within multiple database structures. Furthermore, some

database structures invite or require certain approaches. For example, in the

single-table MARATHON database, solutions must be expressed using self-joins

or subqueries. Through exposure to multiple database structures, students are

encouraged to practice and refine skills spanning all SQL concepts and multiple

problem domains.

The use of standard databases avoids the need for students to familiarize

themselves with a brand new database structure for each assignment. Instead,

students solve information requests with the benefit of thorough knowledge of

the tables, columns, and relationships present in a given database. All schema

information is provided to students at the beginning of the course. In an initial

lab, students write SQL Data Definition Language (DDL) and Data Manipulation

Language (DML) statements to define and populate each of the lab databases. To

complete the SQL query labs described in this thesis, students use standardized

versions of the lab databases rather than their own versions (which may differ

slightly, due to column naming conventions, etc.)

41

Table 4.3: Summary of Lab Assignments Used in this Study

Lab Exercises Area of Focus

A 43 JOIN, WHERE

B 33 GROUP BY, aggregate functions, HAVING

C 40 Nested SQL

Each lab assignment centers around certain features of SQL, as listed in Table

4.3. Below is an example introduction to a lab assignment:

Write SQL queries that return information as requested. Each infor-
mation need must be met with a single SQL statement. Do not use
grouping (GROUP BY) or aggregation for these queries. You may re-
fer only to codes/names included in the question. Do not use numeric
IDs or key values.

In the first two labs, students are instructed to confine their solutions to

specific SQL features. Students must formulate Lab A queries without the use

of grouping, aggregation, or nesting. For Lab B, students are permitted to use

joins, expressions, grouping, and aggregation but nesting remains disallowed. In

the final lab assignment, Lab C, students are permitted to use any ANSI-standard

SQL language features. These limitations on expressive power are intended to

encourage students to develop a firm understanding of simple concepts. As labs

progress, students are required to combine concepts in ever more advanced ways.

As described by Chan et al. [8], expressive ease and task complexity are two

important factors that affect user success in database query scenarios. Chan et

al. describe a third factor, representational realism, which varies among different

query languages. Since we have confined our study to a single query language

(SQL) we set aside the question of representational realism. We do, however, rely

42

on measures of expressive ease and task complexity as two of our independent

variables.

We adopt and extend SQL concept categorizations from previous studies of

SQL learning by Ahadi et al. [2] and Taipalus et al. [36]. Both prior studies

identify concepts such as single-table queries, multi-table joins, restriction ex-

pressions, grouping, nested SQL, and ordering. In this thesis, we study several

SQL concepts that were not specifically included in these prior studies. These

additional SQL concepts are: set operations, such as UNION, joins based on an

inequality comparison between column values, which we term “non-equi-joins”,

relational division, full outer join, and pivot operations used to transpose rows

and columns. Table 4.4 contains a complete list of SQL concepts that we address

in this thesis.

Each exercise focuses on one or more fundamental SQL concepts, with key

concepts repeated across multiple exercises. Appendix C lists the concepts present

in each exercise. By repeating concepts, students gain practice applying each SQL

concept in multiple ways against multiple database structures. Furthermore, the

extensive collection of lab exercises we study in this thesis permits us to evaluate

concept combinations. Many SQL concepts are easily understood in isolation

but become challenging when combined with other concepts. For example, most

students readily learn basic join concepts as well as single-table grouping and

aggregation operations. Difficulties often arise, however, when students must

combine joins and grouping within a single SQL query. Table 4.5 provides a

summary view of the distribution of SQL concepts across the three lab assign-

ments we study in this thesis. Figure 4.1 depicts a co-occurrence matrix showing

the frequency with which pairs of concepts appear together in lab exercises. In

the remainder of this thesis, we seek to identify concepts and combinations with

43

Table 4.4: SQL Query Concepts Studied in this Thesis

Query Concept Description

Single-table Selection and projection using a single table [2]
Multi-table Multiple tables joined together using natural or

equi- joins
[2]

Ordering Sorting using the ORDER BY clause [36]
Expressions Row restriction expressions that appear in the

WHERE clause
[36]

Expressions With Nesting Row restriction expressions that involve nested
conjunctions and disjunctions

[36]

Multiple Source Tables Projected columns from multiple tables [36]
Grouping Row grouping using the GROUP BY clause [2]
Grouping restrictions Use of the HAVING clause [36]
Aggregation Functions Use of SQL aggregate functions with or without

the GROUP BY clause
[2]

Computed Grouping Grouping on computed values, rather than plain
column values

Parameter distinct DISTINCT keyword required within an aggregate
function (ie. COUNT(DISTINCT ...)

[36]

Does not exist Negated existential quantification (¬∃), corre-
sponds to SQL’s NOT IN, NOT EXISTS, or OUTER

JOIN syntax

[36]

Uncorrelated subquery Single-level nested SQL in any of the SELECT

clauses
[2]

Correlated subquery Correlation required between inner and outer sub-
query

[2]

Equal subqueries Two or more subqueries that appear at the same
level

[36]

Self-join A join that requires two instances of the same table [2]
Scalar Functions Use of SQL scalar functions, such as ROUND, or

RDBMS-specific date functions
Set Operations Use of relational set operations, such as UNION

Non-Equi-Join Join based on an inequality between condition
Relational Division Identify values from a relation that are paired with

all values from another relation
Pivot Transpose data from multiple rows into columns

within a single row
Full Outer Join Include all values from both the left and right sides

of a join

which students have particular trouble. We also aim to identify cases where

existing lab exercises fail to adequately cover important concept combinations.

44

Table 4.5: Summary of the Distribution of SQL Concepts Across Lab Assign-

ments

Lab Concept Count Concepts per Exercise (Avg)

A 14 4.0

B 15 5.8

C 23 6.8

All Labs 28 5.4

4.4 Data Set

The data we analyze in this thesis consists of an established set of SQL query

problems as described above, coupled with extensive student-database interaction

data collected as part of this thesis. To allow comparison with previous similar

studies, we classify query concepts and errors according to the taxonomies de-

scribed by Taipalus et al. in [36]. In this section, we describe the raw data that

we collected and we summarize the error taxonomy used in the next chapter.

4.4.1 Raw Data

The data-gathering application described in Section 3.1 records the following

detail for every student interaction with the course database:

• Anonymized course/section identifier

• Anonymized student identifier

• Description of the task / objective

• Date and time (seconds precision) of student submission

45

Si
ng

le
-T

ab
le

 *
M

ul
ti-

Ta
bl

e
*

Or
de

rin
g

+
Ex

pr
es

sio
ns

 +
Ex

pr
es

sio
ns

 W
ith

 N
es

tin
g

+
M

ul
tip

le
 S

ou
rc

e
Ta

bl
es

 +
Gr

ou
pi

ng
 *

Gr
ou

pi
ng

 R
es

tri
ct

io
ns

 *
Ag

gr
eg

at
e

Fu
nc

tio
ns

 *
Co

m
pu

te
d

Gr
ou

pi
ng

Pa

ra
m

et
er

 D
ist

in
ct

 +
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t A
gg

 V
al

ue

Ag
gF

n
Ev

al
ua

te
d

Ag
ai

ns
t C

ol
um

n
Va

lu
e

+
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t C
on

st
an

t V
al

ue
 +

Do
es

 N
ot

 E
xi

st
 +

Un
co

rre
la

te
d

Su
bq

ue
ry

 *
Co

rre
la

te
d

Su
bq

ue
ry

 +
Eq

ua
l S

ub
qu

er
ie

s +
Se

lf-
Jo

in
 *

Sc
al

ar
 F

un
ct

io
ns

Co

m
pu

te
d

Se
le

ct
io

n

Co
m

pu
te

d
Pr

oj
ec

tio
n

Di

st
in

ct
 P

ro
je

ct
io

n

Se
t O

pe
ra

tio
ns

No

n-
Eq

ui
-Jo

in

Re
la

tio
na

l D
iv

isi
on

Pi

vo
t

Fu
ll

Ou
te

r J
oi

n

Un
iq

ue
 E

xe
rc

ise
 C

ou
nt

 (S
in

gl
e

Co
nc

ep
t)

 * Single-Table
 * Multi-Table

 + Ordering
 + Expressions

 + Expressions With Nesting
 + Multiple Source Tables

 * Grouping
 * Grouping Restrictions
 * Aggregate Functions
 Computed Grouping
 + Parameter Distinct

 AggFn Evaluated Against Agg Value
 + AggFn Evaluated Against Column Value

 + AggFn Evaluated Against Constant Value
 + Does Not Exist

 * Uncorrelated Subquery
 + Correlated Subquery

 + Equal Subqueries
 * Self-Join

 Scalar Functions
 Computed Selection

 Computed Projection
 Distinct Projection

 Set Operations
 Non-Equi-Join

 Relational Division
 Pivot

 Full Outer Join

0 0 36 21 2 0 21 11 27 3 7 8 0 2 4 11 0 5 6 6 0 4 1 0 3 0 0 1 42
0 0 63 50 2 31 38 14 38 0 5 10 8 0 1 14 4 7 10 6 1 17 9 1 4 2 2 0 74
36 63 0 62 3 28 47 18 49 3 10 11 4 1 4 13 4 10 13 11 1 17 10 1 6 2 2 1 99
21 50 62 0 0 20 27 6 32 0 6 3 5 1 4 8 3 7 14 6 1 15 8 1 5 2 2 1 71
2 2 3 0 0 2 1 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4
0 31 28 20 2 0 15 8 15 0 2 4 3 0 0 6 1 1 3 5 1 11 1 1 0 0 1 0 31
21 38 47 27 1 15 0 25 58 2 9 18 8 2 0 20 4 10 3 8 0 12 0 0 5 0 0 1 59
11 14 18 6 0 8 25 0 24 1 2 12 2 2 0 13 1 2 2 4 0 3 0 0 1 0 0 0 25
27 38 49 32 2 15 58 24 0 3 11 18 8 2 0 20 4 11 6 10 0 15 0 0 5 0 0 1 65
3 0 3 0 0 0 2 1 3 0 0 1 0 0 0 1 0 0 0 3 0 2 0 0 0 0 0 0 3
7 5 10 6 1 2 9 2 11 0 0 2 0 0 0 2 0 1 3 1 0 1 0 0 1 0 0 0 12
8 10 11 3 0 4 18 12 18 1 2 0 0 1 0 15 1 4 0 2 0 2 0 0 0 0 0 0 18
0 8 4 5 0 3 8 2 8 0 0 0 0 0 0 5 3 1 0 0 0 4 0 0 0 0 0 0 8
2 0 1 1 0 0 2 2 2 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 2
4 1 4 4 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 5
11 14 13 8 0 6 20 13 20 1 2 15 5 1 5 0 0 1 0 2 0 4 0 0 0 0 0 0 24
0 4 4 3 0 1 4 1 4 0 0 1 3 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 4
5 7 10 7 0 1 10 2 11 0 1 4 1 0 0 1 2 0 0 1 0 2 0 0 3 0 0 1 12
6 10 13 14 1 3 3 2 6 0 3 0 0 1 0 0 0 0 0 0 0 1 3 0 4 2 2 0 16
6 6 11 6 0 5 8 4 10 3 1 2 0 0 0 2 0 1 0 0 0 10 0 0 0 0 0 0 12
0 1 1 1 0 1 0 1
4 17 17 15 0 11 12 3 15 2 1 2 4 0 0 4 2 2 1 10 0 0 0 1 0 0 0 0 21
1 9 10 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 2 0 0 10
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
3 4 6 5 0 0 5 1 5 0 1 0 0 1 0 0 0 3 4 0 0 0 2 0 0 1 0 0 7
0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 1 0 0 0 2
0 2 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0

8

16

24

32

40

Co
un

t o
f E

xe
rc

ise
s i

n
wh

ich
 C

on
ce

pt
s C

o-
Oc

cu
r

Figure 4.1: SQL Concept Co-occurrence Matrix - Values in Each Cell Represent
the Number of Times the Two Concepts Appear in the Same SQL Exercise. In
this thesis, we studied 28 distinct SQL concepts and 130 different lab exercises.
Concepts marked with an asterisk (*) were discussed by Ahadi et al. in [2];
concepts marked with a plus sign (+) were first discussed by Taipalus et al. [36]

• Full SQL statement submitted by student

• Database error code and message (if any)

• Number of rows and columns in the result set (if any)

• True/false flag indicating whether the query output matches the expected

result

46

All data exported for analysis are anonymized. Course/section information

and student detail, including all personally identifiable information (PII), is omit-

ted from all files that are exported for analysis. Anonymized student identifiers

are stable over time. This permits us to analyze an individual student’s activities

across multiple exercises, while still explicitly avoiding export of any personal

information.

From this raw data we extract summary statistics, such as attempt counts per

exercise, timing statistics, and success rates for each lab exercise (the percentage

of students who successfully complete each exercise.) Certain SQL statements are

excluded from attempt counts, including: commands used to inspect the RDBMS

catalog (such as the MySQL show tables or descr <table name> commands),

empty statements likely issued inadvertently, and identical statements run in

succession. In addition to count, timing, and success rate metrics, we categorize

each student-submitted query using the groups described in Tables 4.6, 4.7, 4.8,

and 4.9. This categorization of queries allows us to analyze common syntax errors

and error sequencing. In addition, we can begin to investigate misunderstandings

that lead to semantic and logical errors.

4.4.2 Error Taxonomy

We further classify errors found in student responses using the error taxonomy

described by Taipalus, et al. in [36] and summarized in Tables 4.7, 4.8, and 4.9.

This taxonomy separates syntactic, semantic, and logical errors into detailed cat-

egories. Applying previously-proposed error taxonomies permits us to compare

our results with conclusions from previous studies. It must be emphasized, how-

ever, that the study described in this thesis differs in several ways from the study

described in [36]. Specifically, we excluded from our study an investigation into

47

Table 4.6: High-Level Groups Used to Categorize Student-Submitted SQL

Queries

Category Description

Syntax Error One or more syntax errors

Semantic Error Syntactically correct query that is in-

correct, no matter the information re-

quest.

Logical Error Syntactically correct query that sat-

isfies an information request different

from that stated.

Valid Query fully satisfies the information re-

quest

query “complications,” defined by Taipalus et al. as errors that do not affect the

final validity of a query but do potentially impact readability, maintainability,

or performance. Examples of complications include unnecessary joins, grouping

using a single group, or unnecessary correlation names. In further contrast to the

Taipalus study, we performed our study using the MySQL RDBMS rather than

SQLLite. Lastly, we conducted our study during normal course activities, rather

than as a separately-administered instrument. With these differences in mind,

we still find value in adopting the well-thought-out concept categories and error

taxonomies proposed by Taipalus et al.

48

Syntax Errors

Syntax errors represent the most frequently-encountered type of errors in our

data. The presence of a syntax error prevents the database from evaluating

a query and results in an immediate error message. We restrict our study to

syntax errors as reported by the MySQL RDBMS. We explicitly do not consider

cases where certain syntax violates the ANSI SQL standard but is accepted by

a particular RDBMS. Examples of non-standard syntax include: non-standard

quotes, non-standard operators (&& versus AND, != versus <>, etc.), as well as

implicit type coercion operations which are permitted by lenient default settings

in certain RDBMSs (including MySQL.) As discussed in Section 7.1.4, future

emphasis seems warranted in this area. However, the results discussed in this

thesis considered a statement to be syntactically valid if it executed without

error in the course MySQL lab environment, which does not exactly adhere to

the ANSI standard.

When analyzing syntax errors in student data, we apply the RDBMS-independent

classification scheme described by Taipalus and summarized in Table 4.7. The

classes and identifiers we use for syntax errors (ie. SYN-1) are identical to those

defined by Taipalus, et al. in [36].

Semantic Errors

The next class of errors, semantic errors, is defined by Brass and Goldberg [4] as

those that cause a SQL query to be incorrect no matter what the original infor-

mation request may be. Errors of this type include inconsistent logical expressions

that always yield an empty result, as well as joins that fail to pair tuples in any

49

Table 4.7: Classification of Syntax Errors, as Proposed by Taipalus et al. [36]

ID Description

SYN-1 Ambiguous database object

SYN-2 Undefined database object

SYN-3 Data type mismatch

SYN-4 Illegal aggregate function placement

SYN-5 Illegal or insufficient grouping

SYN-6 Other common syntax error

sensible way, such as comparing values from different domains or simple failure

to include a necessary join condition.

While it would be possible in some cases for databases to detect these errors

and warn users, commonly-used databases do not have this capability. Semantic

errors can be difficult for SQL novices to detect and correct [32], and it is therefore

useful to include them in this study of student errors.

Table 4.8: Classification of Semantic Errors, First Proposed by Brass & Goldberg

[4], further Studied by Taipalus et al. [36]

ID Description

SEM-1 Inconsistent expression

SEM-2 Inconsistent join

SEM-3 Missing join

SEM-4 Duplicate rows

SEM-5 Redundant column output

50

Logical Errors

The last category of errors, termed logical errors by Brass and Goldberg in [3]

and further studied by Taipalus et al. in [36], includes many errors that trouble

students considerably. Logical errors are those that cause a SQL query to be

incorrect for a particular information request. Often, the presence of a logical

error causes a query to be correct for a different information request than the

stated request.

Examples of logical errors include confusion between AND and OR, missing

parentheses in complex boolean expressions that combine AND with OR, joins

on incorrect columns, or improper nesting of subqueries. As is the case with

semantic errors, a database will (without error or warning) execute a query that

contains logical errors. It is the user’s responsibility to evaluate each query and

its output to determine whether an error is present. Logical errors represent a

particularly subtle and troublesome area for students who are learning SQL.

Table 4.9: Classification of Logical Errors, as Described by Taipalus et al. [36]

ID Description

LOG-1 Operator error

LOG-2 Join error

LOG-3 Nesting error

LOG-4 Expression error

LOG-5 Projection error

LOG-6 Function error

51

4.5 Error Detection

The Lab 365 tool performs only a basic level of error detection and query vali-

dation. As described in Section 3.3, the tool determines query “correctness” by

comparing results from a student’s query against the output from a ground truth

query within a single database instance. Students are instructed to ensure that

their queries are generally valid; grades are assigned based on a manual review

of SQL queries submitted by the student. Table 4.10 summarizes cases where

queries were deemed correct by the Lab 365 tool, but were ultimately invalidated

through manual review.

Table 4.10: Queries Deemed Correct by Lab 365 but Deemed Invalid by Manual

Review (Percentage Average Across Exercises in Each Lab.)

Lab Valid Violates Assignment Invalid

A 92% 5% 3%

B 96% 2% 2%

C 89% 0% 11%

In Table 4.10, the “Valid” column holds the average percentage of queries

that were judged valid by Lab 365 and earned full credit after manual review.

The “Violates Assignment” column represents cases where the submitted query

was deemed valid by Lab 365 and would return correct results, but violated one

or more assignment specifications. Examples include the use of GROUP BY or

nested queries when these language features were expressly disallowed by the lab

assignment. Finally, “Invalid” queries are those judged correct by Lab 365 which

are, in fact, invalid due to logical or semantic errors. Common examples include:

52

• Hard-coded identifier(s) or key value(s) used instead of appropriate filter

expressions;

• Comparisons performed using non-key values with incorrect assumptions

about uniqueness, for example: an IN expression based on customer last

name rather than unique customer identifier;

• Use of LIMIT to report a minimal or maximal value without accounting for

the possibility of ties.

These common errors are described thoroughly to students in advance us-

ing examples, targeted lecture material, and detailed lab assignments, yet these

errors clearly remain a point of confusion and misunderstanding. The manual

validation process builds on the error taxonomy described in the preceding sec-

tions, allowing identification of specific SQL concepts that invite subtle logical

errors that are difficult for novices to understand and avoid when writing SQL

queries. In Sections 7.1.3 and 7.2.3, we suggest several ways to address these

common areas of misunderstanding using new teaching material and extensions

to the Lab 365 tool.

Using the comprehensive error taxonomy adapted from Taipalus, et al. [36]

along with an extensive collection of lab exercises, we are well positioned to in-

vestigate our research questions. As outlined earlier in this chapter, we seek to

identify the SQL concepts and query types that are most challenging for stu-

dents to absorb and apply. The following chapter presents the results of our

quantitative analysis based on a data set comprised of approximately 150,000

student-submitted queries spanning over 100 lab exercises which were designed

to extensively cover commonly-used aspects of SQL’s data retrieval capabilities.

53

5 Results

In this chapter, we present an investigation into the student problem-solving

process spanning 116 SQL exercises and 28 distinct SQL concepts. We identify

difficult SQL concepts and common errors, with a particular emphasis on SQL

syntax errors. We analyzed 149,188 SQL statements representing the accumu-

lated lab work in four sections of an introductory database course by 114 students,

all of whom provided their informed consent (A.1).

5.1 Overview of Results

Of the 149,188 SQL statements we analyzed:

• 47,815 (32.1%) attempts consisted of syntax errors;

• 10,091 (6.8%) statements returned the correct result table which run against

a single sample database instance;

• 4,126 (2.8%) ran without error but yielded zero rows, indicating a semantic

error;

• 8,311 (5.6%) were executed without error using the “Check SQL” button

but did not return correct results, implying a logical or semantic error;

• The remaining 78,845 (52.8%) attempts consisted of data exploration, par-

tial attempts that may have been combined into complete solutions, seman-

tic errors, or logical errors.

For each lab assignment, as described in Table 4.3, we first analyzed student

data at a summary level. Figures 5.5, 5.6, and 5.7 offer an overview of student

54

success rates along with the average number of attempts submitted by each stu-

dent. (Refer to Table 4.3 for a description of the lab assignments included in

this study.) Guided by a high-level view of student behavior, we identified areas

of particular difficulty. We confirmed the significance of these observations us-

ing the repeated measures ANOVA method described in Section 5.3.1. Finally,

we performed detailed analysis on exercises that exhibit the combination of low

success rate and a high average number of attempts.

5.2 Analysis by Instructor

We collected data in four sections of the same introductory class taught by two

different instructors. As shown in Table 4.1, 56 study participants (49%) were

enrolled in sections taught by instructor A. The remaining 58 students (51%) were

enrolled in instructor B’s sections. Both instructors taught based on a common

set of learning objectives and general course content. Students in all sections

completed an identical set of SQL lab exercises. Since course content and lab

exercises are closely aligned between instructors, we expect the performance of

students on lab exercises to be comparable between instructors. Figures 5.1, 5.2,

5.3, and 5.4 show the percent of student success and average attempts for each

lab exercise, split by instructor.

To statistically determine differences due to instructor, we performed a two-

sample, two-sided Kolmogorov-Smirnov (K-S) test [20], summarized in Table 5.1.

We choose this statistical test because our samples indicate that we cannot as-

sume a normal distribution of data. Figures 5.3 and 5.4 show histograms which

bin exercises separately for each instructor based on percent success and average

attempts. In Figure 5.3, for example, Instructor A saw all students succeed on

55

Lab Exercises0%

20%

40%

60%

80%

100%

%
 o

f S
tu

de
nt

s w
ho

 S
ub

m
itt

ed
 C

or
re

ct
 R

es
po

ns
es

Instructor A
Instructor B

Figure 5.1: Percent Success by Instructor

Lab Exercises

10

20

30

40

Av
er

ag
e

At
te

m
pt

s p
er

 S
tu

de
nt

Instructor A
Instructor B

Figure 5.2: Average Attempts by Instructor

50 exercises, while Instructor B saw 100% student success on 35 exercises. Infor-

mally, these histograms visually indicate that the distributions are non-normal.

We also statistically confirmed the non-normality of our samples using D’Agostino

and Pearson’s test [12].

56

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of Students who Submitted Correct Responses

0

10

20

30

40

50

60

Co
un

t

Instructor A
Instructor B

Figure 5.3: Histogram of Lab Exer-
cises, Binned by Percent of Students
who Successfully Solved the Exer-
cise, Split by Instructor

0 5 10 15 20 25 30 35 40
Average Attempts per Student

0

5

10

15

20

25

30

35

40

Co
un

t

Instructor A
Instructor B

Figure 5.4: Histogram of Lab Ex-
ercises, Binned by Average Attempt
Count per Student, Split by Instruc-
tor.

When applying the K-S test, the null hypothesis states that the two samples

are taken from the same statistical distribution. Results of this K-S test are

mixed for our instructor data. When comparing percent success between the

two instructors, a low p-value (0.0022) causes us to reject the null hypothesis

that the two samples are drawn from the same distribution. However, when

comparing average student attempts between instructors, a relatively high p-

value (0.1658) means that we cannot reject the null hypothesis. We conclude that

student success percentages are significantly different between the two instructors

in our study, but that average attempts per exercise are not significantly different

between the two instructors. Further data collection and analysis is warranted,

particularly for the lab exercises that exhibit large differences in percent success,

as shown in Figure 5.1. In addition, analysis that controls for GPA or course

exam performance would likely offer insight.

5.3 Lab A Analysis

For Lab A, we identified five exercises with the combination of high average

number of attempts and low success rate. These exercises (CSU-4, CSU-6,

57

Table 5.1: Results from Two-sample K-S Test [20], Comparing Percent Success

and Average Attempts for Each Exercise, by Instructor.

Sample K-S Statistic p-value

Percent Success 0.2414 0.0022

Average Attempts 0.1466 0.1658

0 10 20 30 40 50
Average Attempts per Student

70

75

80

85

90

95

100

%
 o

f S
tu

de
nt

s w
ho

 S
ub

m
itt

ed
 C

or
re

ct
 R

es
po

ns
es

(A) C-4

(A) C-6

(A) A-3

(A) A-4
(A) A-5

Figure 5.5: Summary of Lab A - Joins and WHERE. Each dot corresponds to
a single lab exercise, plotted based on the percent of students who submitted
a correct response (y-axis) versus the average number of attempts per student
(x-axis). Average attempt counts reflect all students (incorrect and correct).
Labels on data points are exercise identifiers, representing the first initial of the
database name along with exercise number (eg. A-3 indicates the third exercise
in the AIRLINES database)

AIRLINES-3, AIRLINES-4, and AIRLINES-5) are described in detail in Ap-

pendix D. Students’ data for these three exercises, as represented in Figure 5.5,

is summarized in Table 5.2.

58

Table 5.2: Exercises from Lab A on Which We Focus Our Detailed Analysis.

Exercise Query Concept(s) Avg Attempts Success Rate

AIRLINES-3 Self-join, complex expression 23.3 77.4%

AIRLINES-4 Double self-join 24.1 59.6%

AIRLINES-5 Quintuple self-join 22.4 75.8%

CSU-4 Multi-table join, pivot 28.8 74.6%

CSU-6 Complex expressions 27.3 85%

5.3.1 Repeated Measures ANOVA

To confirm that certain exercises do, in fact, require a significantly higher number

of attempts for students to complete, we analyzed student performance using one-

way repeated measures ANOVA. In our analysis, the independent variable, often

referred to as the within-subjects variable in a repeated measures experiment,

is the query task itself. We choose as the dependent variable the number of

attempts required for a student to produce a syntactically correct SQL query

that is a valid response to the information request. Lab assignments are identical

for all students. Each student functions as an experimental block, allowing control

for factors that could cause variability between students.

With repeated measures ANOVA, we test for differences between mean num-

ber of attempts for two lab exercises: a control exercise and the exercise identified

as problematic. In the case of Lab A, we compared CSU-4 and CSU-6 with CSU-1

and we compared AIRLINES-4 with AIRLINES-1. Both CSU-1 and AIRLINES-

1 represent exercises for which 100% of students who attempted the exercise

submitted a valid solution, so we treat these as the controls. The null hypothesis

(H0) states that the mean attempt counts are equal:

59

Hypothesis H0: µ1 = µ2,

where µn is the mean number of attempts by an individual student for a given

lab exercise, n. The alternative hypothesis (H1) states that the two means are

different from one another:

Hypothesis H1: The mean number of attempts is significantly different for one

of the lab exercises.

We calculate an F Statistic as follows:

F =
MSrelated groups

MSerror

(5.1)

Table 5.3 shows the computed F-values and p resulting from the ANOVA for

each of the exercises. For all exercises, we reject the null hypothesis and we are

able to say with confidence that the mean number of attempts is significantly dif-

ferent from the mean number for the control exercises: CSU-1 and AIRLINES-1.

Table 5.3: Lab A ANOVA Result for Exercises AIRLINES-3, AIRLINES-4,

AIRLINES-5, CSU-4, and CSU-6

Exercise F Statistic p-Value

AIRLINES-3 12.042 0.001

AIRLINES-4 6.347 0.025

AIRLINES-5 5.681 0.031

CSU-4 32.109 0.000

CSU-6 38.122 0.000

60

5.3.2 Lab A Discussion

In Lab A, we identified self-joins (present in the AIRLINES exercises) as a partic-

ularly difficult concept, confirming similar observations from Ahadi et al. [2] and

Taipalus et al. [36]. In addition, “pivot” operations, where rows and columns

must be transposed, are a significant area of student confusion. Exercises, such

as CSU-4, that require data to be pivoted stand out in the data charted in Figure

5.5 and, informally, were the source of a large number of student questions.

Lab A also revealed difficulty mapping complex English statements to appro-

priate SQL constructs (as in CSU-6). This last result was somewhat surprising,

given that the “Expressions” SQL concept does not otherwise appear on our list

of most difficult concepts. In this specific case, students appeared to face diffi-

culty translating a highly complex English information request into a valid query.

The difficulty may lie not in the underlying SQL concept, but in the challenging

information request. The question of problem statement complexity was briefly

discussed by Ahadi [2] in the context of grouping. A similar effect may be present

in the case of CSU-6, and it would be interesting to explore further by designing

additional exercises that are similar in nature.

5.4 Lab B Analysis

Lab B included exercises centered on SQL grouping, aggregation, and grouping

restrictions. The repeated measures ANOVA results reported in Table 5.4 indi-

cate that we cannot reject the null hypothesis for the first exercise listed (INN-5,

p-value = 0.16). The INN-5 exercise relies on a combination of two relatively

simple concepts (grouping and expressions) which may explain this statistical

result. For the remaining two Lab B exercises that we highlight as particularly

61

0 10 20 30 40 50
Average Attempts per Student

70

75

80

85

90

95

100

%
 o

f S
tu

de
nt

s w
ho

 S
ub

m
itt

ed
 C

or
re

ct
 R

es
po

ns
es

(B) S-2

(B) I-5

(B) K-4

(B) K-6

Figure 5.6: Summary of Lab B - GROUP BY and HAVING. Each dot corresponds
to a single lab exercise, plotted based on the percent of students who submitted a
correct response (y-axis) versus the average number of attempts per student (x-
axis). Average attempt counts reflect all students (incorrect and correct). Labels
on data points are exercise identifiers, representing the first initial of the database
name along with exercise number (eg. I-5 indicates the fifth exercise in the INN
database)

Table 5.4: Lab B ANOVA Result for Exercises INN-5, KATZENJAMMER-4,

and KATZENJAMMER-6

Exercise F Statistic p-Value

INN-5 2.004 0.160

KATZENJAMMER-4 33.593 0.000

KATZENJAMMER-6 39.601 0.000

difficult (KATZENJAMMER-4, and KATZENJAMMER-6; listed in Table 5.5)

we reject the null hypothesis and claim that these exercises are, in fact, more

62

difficult than control exercises: the mean number of attempts for each exercise is

significantly different when compared to a control exercise.

Table 5.5: Exercises from Lab B on Which We Focus Detailed Analysis

Exercise Query Concept(s) Avg Attempts Success Rate

INN-5
Grouping,

Expressions
22.1 92.4%

KATZENJAMMER-4 Grouping restric-

tions, Self-join

22.3 93.8%

KATZENJAMMER-6 Grouping, Self-join 31.7 90.1%

5.5 Lab C Analysis

Table 5.6: Lab C ANOVA Result for Exercises BAKERY-8, BAKERY-9, and

MARATHON-5

Exercise F Statistic p-Value

BAKERY-8 52.882 0.000

BAKERY-9 41.728 0.000

MARATHON-5 58.054 0.000

Lab C required students to apply the full power of SQL, including subqueries,

grouping, and complex joins to respond to sophisticated information requests.

We again performed repeated measures ANOVA tests (summarized in Table 5.6)

to confirm that the mean number of attempts for the exercises listed in Table

5.7 are significantly different from the average number of attempts required to

successfully solve a control exercise.

63

0 10 20 30 40 50
Average Attempts per Student

70

75

80

85

90

95

100

%
 o

f S
tu

de
nt

s w
ho

 S
ub

m
itt

ed
 C

or
re

ct
 R

es
po

ns
es

(C) B-8(C) B-9

(C) I-3 (C) S-5

(C) C-5

(C) M-5

Figure 5.7: Summary of Lab C - Nested SQL. Each dot corresponds to a single
lab exercise, plotted based on the percent of students who submitted a correct
response (y-axis) versus the average number of attempts per student (x-axis).
Average attempt counts reflect all students (incorrect and correct). Labels on
data points are exercise identifiers, representing the first initial of the database
name along with exercise number (eg. M-5 corresponds to exercise MARATHON-
5 in Lab C)

Table 5.7: Exercises from Lab C on Which We Focus Detailed Analysis.

Exercise Query Concept(s) Avg Attempts Success Rate

BAKERY-8 Subqueries: corre-

lated and equal

42.2 85.0%

BAKERY-9 Grouping restric-

tions, Subqueries

34.3 84.9%

MARATHON-5 Full outer join 35.0 87.2%

64

5.5.1 Consolidated Discussion of Difficult Concepts

Across all labs, we identified several common concepts that seem to cause consid-

erable difficulty for students. Specifically, the self-join, correlated subquery, and

equal subquery concepts repeatedly appear in the exercises that are found to be

most difficult. This observation likely aligns with the intuition of most database

practitioners and instructors. We provided quantitative confirmation via our

analysis. The grouping concept also appears across several of the most difficult

exercises. Notably, however, in difficult exercises, grouping is always paired with

another SQL concept. In exercises where grouping is the focal concept (often with

its natural companion concept: aggregation) most students achieved a high level

of success with relatively few attempts. This question of concept combinations

is an interesting one, and we discuss future investigations in this area in Section

7.1.1.

5.6 Analysis of Errors

This section presents analysis and observations related to student problem solving

behavior across all lab assignments. We begin with an investigation into common

errors with a particular focus on syntax errors, specifically: (a) those errors that

are unusually difficult for students to resolve, and (b) errors that occur as ter-

minal errors. We define terminal errors as those that occur in final, unsuccessful

attempts to solve a problem. In other words: when students abandon an exercise.

65

5.6.1 Common Syntax Errors

Several of our research questions relate to the frequency with which students

encounter errors and to the identification of specific errors that cause considerable

difficulty for students. In this section, we analyze common errors encountered

by students. We pay particular attention to errors that require many attempts

to resolve, as well as those errors that remain unfixed, causing a student to

abandon an exercise without a correct response. We first investigate syntax error

occurrence, based on calculations of the percentage of syntax errors encountered

by each student for each exercise. We compute “percentage of syntax errors” by

summing the total number of syntax errors encountered by a student for a given

exercise, then dividing this sum by the total number of attempts submitted by

the same student for that particular exercise.

Figures 5.8, 5.9, and 5.10 show syntax error percentages for all lab exercises,

reported by syntax error classification (SYN-1 through SYN-6). Notably, we

observe that the percentage of syntax errors remains relatively high throughout

Lab C. Since labs A, B, and C are intended to build skills progressively, the

elevated level of syntax errors in Lab C is unexpected. Early lab exercises are

designed to introduce and reinforce basic SQL skills, with the objective of building

to the more difficult exercises in Lab C. It is clear, however, that SQL syntax

continues to trouble students even after significant practice.

Figure 5.11 plots the difference in error percentage between students who sub-

mitted a successful response and those who did not. This chart indicates that, for

almost all lab exercises, unsuccessful students experienced a greater proportion

of syntax errors than those students who submitted a successful solution. This

confirms the observation by Ahadi et al. in [2] that syntax errors are a signifi-

66

A-
1

A-
2

A-
3

A-
4

A-
5

A-
6

B-
1

B-
2

B-
3

B-
4

B-
5

B-
6

C-
1

C-
2

C-
3

C-
4

C-
5

C-
6

C-
7 I-1 I-2 I-3 I-4 I-5 I-6 K-
1

K-
2

K-
3

K-
4

K-
5

K-
6

K-
7

K-
8

M
-1

M
-2

M
-3

M
-4

M
-5 S-
1

S-
2

S-
3

S-
4

S-
5

Lab A Exercises

SYN-1
SYN-2
SYN-3
SYN-4
SYN-5
SYN-6Er

ro
r C

at
eg

or
ie

s

0

4

8

12

16

20

Pe
rc

en
t o

f A
tte

m
pt

s

Figure 5.8: Syntax Error Percentages for All Exercises in Lab A (Per-Student
Averages)

A-
1

A-
2

A-
3

A-
4

B-
1

B-
2

B-
3

B-
4

B-
5

C-
1

C-
2

C-
3

C-
4 I-1 I-2 I-3 I-4 I-5 K-
1

K-
2

K-
3

K-
4

K-
5

K-
6

M
-1

M
-2

M
-3

M
-4

M
-5 S-
1

S-
2

S-
3

S-
4

Lab B Exercises

SYN-1

SYN-2

SYN-3

SYN-4

SYN-5

SYN-6

Er
ro

r C
at

eg
or

ie
s

0

4

8

12

16

20

Pe
rc

en
t o

f A
tte

m
pt

s

Figure 5.9: Syntax Error Percentages for All Exercises in Lab B (Per-Student
Averages)

B-
1

B-
2

B-
3

B-
4

B-
5

B-
6

B-
7

B-
8

B-
9

C-
1

C-
2

C-
3

C-
4

C-
5

C-
6

C-
7 I-1 I-2 I-3 I-4 I-5 K-
1

K-
2

K-
3

K-
4

K-
5

K-
6

K-
6a

K-
6b K-
7

K-
8

M
-1

M
-2

M
-3

M
-4

M
-5 S-
1

S-
2

S-
3

S-
4

S-
5

Lab C Exercises

SYN-1

SYN-2

SYN-3

SYN-4

SYN-5

SYN-6Er
ro

r C
at

eg
or

ie
s

0

4

8

12

16

20

Pe
rc

en
t o

f A
tte

m
pt

s

Figure 5.10: Syntax Error Percentages for All Exercises in Lab C (Per-Student
Averages)

cant stumbling block for students learning SQL. We also observe that there is no

difference in the set of syntax errors encountered by unsuccessful versus success-

ful students. In other words, we failed to identify any syntax errors that were

encountered solely by students who did not submit successful solutions. This

provides a partial answer to our fourth research question: students, both suc-

cessful and unsuccessful, encountered the full range of syntax errors. We do not

yet know whether the same holds true for semantic and logical errors, since we

do not in this thesis systematically perform fine-grained analysis of semantic and

logical errors.

67

Lab Exercises

20

10

0

10

20

30

40

50

60

Di
ffe

re
nc

e
in

 P
er

ce
nt

ag
e

of
 S

yn
ta

x
Er

ro
rs

 (I

nc
or

re
ct

 v
s.

Co
rre

ct
 A

tte
m

pt
s) (A) C-1

(A) M-3
(C) K-1

(C) K-8

Figure 5.11: Syntax Errors for all Lab Assignments, Comparing Syntax Error
Proportions Between Students who Correctly Solved the Exercise with Students
who did not Submit a Correct Response. Bars above 0 represent exercises in
which students who were unsuccessful encountered a greater percentage of syntax
errors in relation to total attempts

5.6.2 Difficult-to-Resolve Syntax Errors

We now turn our attention to those syntax errors which are particularly difficult

for students to resolve. To make this determination, we compute for each syntax

error encountered the number of attempts required to produce a SQL query

that executes without error. In this initial analysis, we do not scrutinize query

structure. This simplifying omission raises the possibility that a student may have

chosen to significantly revise, or entirely replace, her query during the process of

error resolution. With this first analysis, we simply seek to identify syntax errors

that significantly frustrate users. With this knowledge of particularly troublesome

SQL syntax errors, an instructor may be able to provide to students additional

exercises or instruction to aid in the learning process.

As Figure 5.12 shows, most syntax errors are fixed relatively quickly: 46% of

errors are resolved in just one attempt, 83% require three or fewer attempts to

resolve. This is expected and confirms our intuition that many syntax errors are

68

1 2 3 4 5 6 7 8 9 10
Attempts Between Initial Error and Working Query

0

1000

2000

3000

4000

5000

6000
Oc

cu
rre

nc
es

Figure 5.12: Syntax Errors, attempts Required to Fix. X-axis values represent
the number of attempts required to resolve syntax errors; the y-axis indicates the
number of distinct syntax errors encountered

simple misspellings, misplaced commas, or unbalanced delimiters, all of which are

readily identified and fixed. However, this chart also reveals instances of syntax

errors that are not so easily fixed. We focus on cases where a single syntax error

required five or more attempts to resolve. Table 5.8 summarizes these difficult-

to-resolve syntax errors using the categories defined by Taipalus et al. [36].

Among the most difficult-to-resolve syntax errors, the “Common syntax er-

ror” category (SYN-6) stands out as the most prevalent. This category is far less

focused than the other categories, and includes a wide variety of SQL syntax er-

rors, including comma omissions, mismatched delimiters, invalid clause ordering.

In this thesis, we did not further break down the SYN-6 syntax error category.

69

Table 5.8: Cases Where More than Five Attempts Were Required to Resolve a

Syntax Error. Error Categories (SYN-x) are as Defined by Taipalus et al. [36].

Some SYN-3 (data type mismatch) Errors may have been Mis-classified as SYN-6

(Common Syntax Error), an Issue we Discuss Further in Section 5.6.2

Category Occurrences % of Students

SYN-1 245 63.5%

SYN-2 409 87%

SYN-3 0 0% (*)

SYN-4 94 46.1%

SYN-5 328 84.3%

SYN-6 1143 99.1%

Such fine-grained categorized could be accomplished by extending our Lab 365

tool, and doing so may well yield valuable conclusions.

To detect data type mismatch errors (SYN-3), we relied on MySQL’s default

settings and parsing behavior, which we found to be both lenient (permitting im-

plicit coercion in many cases) and lacking in detailed error reporting. We expect

that some errors in the general SYN-6 category may be more accurately classified

as SYN-3. Appropriate detection of SYN-3 errors would be best accomplished via

extensions to the Lab 365 tool. This future work is discussed further in Section

7.2.

Setting aside the SYN-6 and SYN-3 categories, a large proportion of students

experienced difficulty resolving almost all types of errors. Recall that Table 5.8

represents only those instances when a syntax error required more than five at-

tempts to resolve. This finding offers further confirmation of the observations by

70

Ahadi et al. in [2]: students learning SQL struggle with its unfamiliar syntax,

and this represents a hurdle in the learning process. In Section 7.1, we recom-

mend several possible approaches to addressing these clear difficulties with SQL

syntax through modifications to lab activities.

5.6.3 Terminal Attempts

When a student attempts a given problem but does not submit a correct response,

we refer to the student’s final attempt as a “terminal” attempt. In the following

section, we investigate terminal attempts and we seek to identify patterns. In this

analysis, we again apply the error taxonomy described in Section 4.4.2, seeking to

identify errors that frequently occur as terminal attempts. Identification of these

errors offers additional insight into the problem-solving process, highlighting key

misunderstandings that can cause students to abandon problems.

In certain cases, a student’s terminal attempt does not clearly represent an

error, but instead appears to be an partially-formed, but incomplete, solution. We

categorize these cases separately and remark that they warrant future analysis.

It seems likely that detailed scrutiny of these non-error terminal attempts could

offer valuable information. Non-error terminal attempts may simply indicate that

a student ran out of time, or such attempts may reveal conceptual gaps that were

difficult to bridge. Whatever the cause, it would be interesting to study the lead-

up to these terminal attempts. We discuss this possible future work further in

Section 7.2.4.

Comparing our results to a similar study of “persistent” errors by Taipalus et

al. [35], in which the authors identified types of errors likely to remain unfixed

throughout the problem-solving process, we find that our summary results gener-

71

Table 5.9: Categorization of Terminal Attempts. The category labeled ”Other”

represents final, incorrect, attempts that appear to be partially-formed or in-

termediate statements rather than true attempts. Examples include: isolated

subqueries and simple exploratory queries such as: SELECT * FROM Table

Error Type Count Percent

Syntax Error 72 19.2%

Semantic Error 58 15.5%

Logical Error 78 20.8%

Other 167 44.5%

ally agree with the observations made by Taipalus et al. Specifically, in agreement

with the Taipalus study, our data indicate that logical errors are most likely to

appear in students’ final responses. However, Taipalus et al. identify semantic

errors are the second most likely, in contrast to our analysis which identified syn-

tax errors as the second most likely. Our study considers a far smaller sample:

we studied only 375 terminal queries compared to 8,773 final queries analyzed in

the Taipalus study. Continued data gathering and study of persistent errors, and

the steps leading up to these errors, will likely yield useful insight.

5.7 Quantifying Student Learning

At a high level, the labs and exercises we studied in this thesis were carefully

designed to first introduce core SQL concepts. Subsequent exercises offer in-

creasingly advanced practice. This sequencing is intended to allow students to

learn, practice, then ultimately master SQL concepts. In an attempt to quantify

this learn-practice-master progression, we choose several important SQL concepts

72

that appear repeatedly across exercises. We take advantage of the fact that the

Lab 365 application records the order in which students complete exercises. Us-

ing this data, we chart student performance (and, we hope, improvement) over

time on lab exercises that share the same primary concept.

We first analyze student improvement on exercises that center on the “Group-

ing Restrictions” concept. Although this concept appears in combination with

many other concepts (as shown in Figures D.1, D.2, and D.3) we focus specif-

ically on five exercises from Lab B where these Grouping Restriction is the

focal concept, namely: AIRLINES-1, BAKERY-1, CSU-2, STUDENTS-2, and

KATZENJAMMER-5. Figure 5.13 charts average student attempts (bars, left

axis) and percent of attempts that yielded a syntax error (line, right axis) based

on the order in which each student completed the five exercises. We interpret the

decrease in both average attempts and proportion of syntax errors as an indicator

of significant improvement through guided practice.

1st
Exercise

2nd
Exercise

3rd
Exercise

4th
Exercise

5th
Exercise

Student Work Sequence

0

5

10

15

20

25

30

35

Av
er

ag
e

At
te

m
pt

s

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
t S

yn
ta

x
Er

ro
rs

Average Attempts
% Syntax Errors

Figure 5.13: Student Work Se-
quence: Grouping Restrictions

1st
Exercise

2nd
Exercise

3rd
Exercise

4th
Exercise

Student Work Sequence

0

5

10

15

20

25

30

35

Av
er

ag
e

At
te

m
pt

s

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
t S

yn
ta

x
Er

ro
rs

Average Attempts
% Syntax Errors

Figure 5.14: Student Work Se-
quence: Does Not Exist

We also investigated exercises that relied primarily on the “Does Not Exist”

concept. This concept is the focus of four exercises from Lab C: BAKERY-1,

BAKERY-3, KATZENJAMMER-1, KATZENJAMMER-5 (Figure 5.14.) Again,

the downward trend in both attempts required and syntax errors encountered

73

offers confirmation that, through practice, students learn to efficiently apply ad-

vanced SQL concepts such as “Does not Exist.”

We concentrated our analysis in this section on the “Grouping Restrictions”

and “Does Not Exist” concepts. These two concepts are useful in many real-

world query scenarios, and each individually often represents the focal concept

within queries that also involve fundamental concepts such as joins and expres-

sions. The SQL labs we studied in this thesis include a large number of similar,

seemingly-repetitious, exercises that test students’ understanding of a relatively

small number of SQL concepts. The analysis in this section confirms the value of

overlap in lab exercises. We did not, however, systematically determine the exact

number of practice problems that would be appropriate for each SQL concept

(which may expand or shrink the current list of lab exercises.) We discuss the

possibility of adaptive problem generation as future work in Section 7.2.1.

5.8 Principal SQL Concepts

As mentioned in previous sections and in related work by Ahadi et al. [2], most

students face little difficulty learning and applying basic SQL concepts, such as

joins, expressions, and projection. However, students often struggle with more

advanced concepts such as self-joins, grouping, grouping restrictions, and “does

not exist.” In this section, we rank SQL concepts based on subjective complexity

(Table 5.10), then identify a single primary concept for each lab exercise. With

this list, we analyze student success rates and average attempts by SQL concept.

Table 5.10 lists 18 core SQL concepts, along with a subjective complexity

score (1-18) for each concept. Concepts are divided into two levels: fundamental

and advanced. We omit in this section ten “extended” SQL concepts, represent-

74

Table 5.10: Core SQL Concepts Ranked by Subjective Complexity. The “Ex-

ercises” column lists the number of lab exercises for which each concept is the

primary or focal concept.

Rank Concept Level Exercises Discussed In

1 Single-Table Fundamental 4 [2] [36]

2 Expressions Fundamental 3 [2] [36]

3 Expressions with Nesting Fundamental 1 [2] [36]

4 Multi-Table Fundamental 25 [2] [36]

5 Aggregate Functions Fundamental 3 [2] [36]

6 Grouping Fundamental 12 [2] [36]

7 Set Operations Fundamental 1

8 Uncorrelated Subquery Fundamental 5 [2] [36]

9 Equal Subqueries Fundamental 4 [36]

10 Correlated Subquery Fundamental 3 [36]

11 Grouping Restrictions Advanced 21 [2] [36]

12 Does Not Exist Advanced 5 [36]

13 Parameter Distinct Advanced 9 [36]

14 Non-Equi-Join Advanced 3

15 Pivot Advanced 0

16 Self-Join Advanced 14 [2] [36]

17 Relational Division Advanced 2

18 Full Outer Join Advanced 1

ing complementary language features that are useful only in combination with

one or more of the 18 core concepts listed in Table 5.10. Extended concepts

include: Ordering, Scalar Functions, Computed Selection, Computed Projection,

75

and Computed Grouping. A further discussion of these extended SQL concepts

can be found in Section 4.3.1.

Following the per-exercise analysis we performed in Sections 5.3, 5.4, and 5.5,

Figure 5.15 charts each SQL concept based on average attempts and percent of

students who successfully submitted correct responses. To compute per-concept

statistics, we identified a single primary concept for each of the 116 lab exercises.

In agreement with our previous analysis in Sections 5.3, 5.4, and 5.5, we observe

that “Self-Join” and “Correlated Subquery” are troublesome concepts. Several

other advanced SQL concepts also appear in the bottom right quadrant (low

success, high average attempts) of the chart, namely: Set Operations, Full Outer

Join, and Relational Division. Our data set for these three concepts is relatively

small; they are poorly represented in the existing set of lab exercises. We also note

that the Pivot concept does not appear in the lower right quadrant of Figure 5.15.

This is due to the fact that Pivot does not serve as the primary, focal concept

for any current lab exercises. Aside from these minor differences, the analysis in

this section offers additional confirmation of observations described previously in

this thesis.

5.9 Concept Associations

Building on the analysis of primary concepts in the previous section, we next

investigate student success by SQL concept. For each student, we computed the

set of SQL concepts (from Table 5.10) for which the student submitted at least one

correct response. We then applied the Apriori algorithm described by Agrawal et

al. in [1] to identify frequently-occurring subsets of SQL concepts. (Such subsets

are often referred to as “frequent itemsets.”) In this way, we identified areas where

76

0 10 20 30 40 50
Average Attempts per Student

70

75

80

85

90

95

100

%
 o

f S
tu

de
nt

s w
ho

 S
ub

m
itt

ed
 C

or
re

ct
 R

es
po

ns
es

Set Operations
Correlated Subquery

Self-Join

Relational Division

Full Outer Join

Figure 5.15: Average Attempts and Percent Success for the 18 Core SQL Con-
cepts Listed in Table 5.10

student success in certain concepts is associated with success in other concepts.

In particular, we identify several frequent subsets that include both fundamental

and advanced concepts.

Table 5.11 lists SQL concept subsets that occur for 90% or more of students,

when considering only concepts for which a student submitted at least one cor-

rect response. This list highlights associations between SQL concepts student

success. Specifically, we note that the Grouping and Grouping Restrictions con-

cepts appear in most of the frequent itemsets, Furthermore, these two concepts

appear to be linked with several advanced concepts, including Self-Join. This

seems counter-intuitive, since, on the surface, grouping has little to do with the

self-join operation. We suspect that this association reveals a link from solid

student understanding of unfamiliar relational concepts to mastery of SQL as

a whole. Once a student has learned to successfully apply core concepts such

77

as joins and grouping, we believe that the student is better table to learn and

apply advanced SQL concepts. This observation, and future analysis proposed

in Section 7.2.2, offers key information related to the overall research questions

we posed in this thesis.

Table 5.11: Frequently-Occurring (≥ 90% support) Subsets of SQL Concepts in

Successful Student Responses. The “Support” column represents the percentage

of students who successfully solved at least one exercise containing each concept

in the listed subset.

SQL Concept Subset Support

Grouping, Grouping Restrictions 97.7%

Grouping, Parameter Distinct 97.7%

Parameter Distinct, Grouping Restrictions 97.7%

Grouping, Parameter Distinct, Grouping Restrictions 97.7%

Grouping, Multi-Table 93.1%

Multi-Table, Parameter Distinct, Grouping Restrictions 93.1%

Grouping, Multi-Table, Parameter Distinct, Grouping Restrictions 93.1%

Grouping, Self-Join, Grouping Restrictions 93.1%

Self-Join, Multi-Table, Grouping Restrictions 90.8%

Grouping, Multi-Table, Grouping Restrictions, Self-Join, Parame-

ter Distinct

90.8%

78

6 Threats to Validity

Internal Validity. Each student is free to complete exercises within a given

lab in whatever order he or she chooses, raising the possibility that fatigue or

other factors may play a role in student performance. In addition, since our

experiment uses repeated measures design, we explicitly do not address possible

effects related to the order in which students work on lab exercises.

The Lab 365 tool we developed could affect participants’ abilities to solve SQL

exercises. Although the tool is designed as a minimal SQL interface, usability

and user interaction decisions invariably have been made (either intentionally or

not.) These decisions have not been rigorously tested for impact on study results.

For most exercises in this study, students were permitted to view expected

output at any time during SQL query development. This matches previous similar

studies ([2], [35]), which also allowed students to view expected query output. In

most real-world situations, however, a SQL developer does not have the ability

to preview results. The ability to preview results may artificially simplify certain

query tasks.

External Validity. We conducted our study using a specific RDBMS (MySQL)

within a quarter-long database course which did not extensively cover database

design topics such as the Entity-Relationship model or normalization. Our re-

sults may not generalize to courses in which a different RDBMS is used, or to

courses in which students are exposed to additional database topics.

At the beginning of our study, students are informed that their interactions

with the Lab 365 application will be recorded for analysis. This knowledge may

alter student problem-solving behavior, introducing Hawthorne effects. For ex-

ample, a student might devote an atypical amount of effort to manually inspecting

79

SQL code before testing each query in an attempt to prevent the system from

recording too many incorrect attempts.

80

7 Conclusions and Future Work

In this thesis, we originally set out to investigate the learning process in an intro-

ductory database course, and to quantitatively study troublesome SQL concepts

and common errors. The database lab tool we developed proved effective. Lab

365 facilitated collection of a large volume of data related to the student problem-

solving process, and promises to be a useful tool in the future.

Our results are largely consistent with similar previous studies. In concurrence

with Ahadi et al. [2], we observe that SQL syntax errors are a significant source

of student frustration. Analyzing the most difficult SQL concepts, we find that

self-joins, correlated subqueries, and (to a lesser extent) grouping restrictions are

most troublesome. These findings are similar to results reported by Taipalus et al.

[36], and Ahadi et al. [2]. In comparison to these previous studies, we studied a

larger collection of SQL exercises based on a wider variety of database structures

and problem domains. We also investigated several SQL concepts that, to our

knowledge, have not been previously studied in an educational context. With the

benefit of these extensions to previous studies, we performed an initial study of

SQL concept combinations. Drawing from our analysis, we are well-positioned to

suggest improvements to lab exercises and to validate the effect of these changes

on the student learning process.

7.1 Recommendations for Lab Improvement

The capabilities of the tool that we constructed in this thesis, combined with our

initial analysis, offer a sound basis for future investigation and improvement. In

this section we provide several recommendations for changes to lab exercises that

are informed by the results that we presented in this thesis.

81

7.1.1 Concept Combinations

Certain concept combinations pose significant difficulty for students. We specifi-

cally identified the following challenging combinations:

1. Self-Join & Expressions

2. Muli-Table Joins & Pivot (recall that a “pivot” operation transposes rows

and columns)

3. Grouping & Self-Join

4. Grouping & Subqueries (correlated and equal)

We suggest designing additional lab exercises and in-class examples to provide

practice applying these difficult concept combinations. To rule out any effects

related to specific database structures or application domains, we suggest de-

signing these new exercises for all current (and future) lab databases. In this

way, we would ensure broad student exposure to troublesome SQL concept com-

binations. One challenge is to ensure that additional exercises do not simply

constitute repetitive, tedious work for students. To address this the online lab

application could adapt to the individual student learning process, a possibility

discussed further in Section 7.2.1.

7.1.2 Recently-Added SQL Features

The introductory database course described in this thesis focused mainly on SQL

as it is specified in the SQL-92 standard. However, the course includes brief

coverage of recent language features, such as window functions and common table

expressions. Several existing lab exercises lend themselves to solutions based on

82

these extensions to the SQL standard. We find that some students successfully

apply these SQL features. However, none of the lab exercises studied in this

thesis were specifically designed to require the use of modern SQL features or

standard language extensions. We suggest designing additional lab exercises to

encourage students to master these powerful new language features.

7.1.3 SQL Interpretation Skill

As described in Section 2.4, the introductory database course on which this study

is based first introduced basic relational algebra building blocks. Students then

learned to assemble these building blocks into simple queries which, in turn,

were combined together in a “scaffolded” manner to construct compound queries

to solve complex tasks. Current lab exercises focus almost exclusively on this

bottom-up approach to SQL learning.

Most beginning students quickly learn to build syntactically valid SQL queries.

However, as revealed in this study and in previous similar studies ([2], [35], and

[36]), students experience difficulty formulating semantically and logically correct

solutions to complex query tasks. Given the prevalence of semantic and logical

errors, it would be interesting to study the effect of devoting additional instruc-

tional attention to the skill of deconstructing complex SQL queries to identify

the intended behavior and to identify errors. Without this important skill, the

problem-solving process may too often devolve into simple trial-and-error instead

of an intentional process based on careful design and evaluation on the part of

students.

83

7.1.4 Emphasis on ANSI-Standard SQL

The analysis of common syntax errors presented in this study revealed many areas

of confusion related to vendor-specific SQL features. Examples include: errors

related to vendor-specific scalar functions, the use of non-standard keyword and

string delimiters, and attempts to use the proprietary operators such as TOP

or PIVOT. Such confusion may be difficult to avoid given the large number of

SQL implementations, many of which support lengthy lists of legacy features. In

addition, given the age of SQL as a language, large volumes of reference material

of varying quality and currency exist both off- and online.

Although the use of non-standard syntax is in often benign, in some cases

it can represent deeper areas of confusion or cases where a student’s approach

has defaulted to random trial and error. For these reasons, we recommend that

future lab exercises include activities that encourage students to prefer ANSI-

standard syntax, with specific emphasis on those areas of the standard which

enjoy broad RDBMS support. This could be enforced through the addition of

syntax validation or “linting” to the online lab tool.

7.2 Future Work

The Lab 365 tool constructed as part of this thesis makes possible many types

of data collection and analysis. The tool, along with the analysis presented

in this thesis, provides a common baseline and platform for future studies of

student problem solving in a database environment. In addition, since the tool

captures full SQL statements, future work could include an in-depth study of

query structure. For example, the data would allow clustering of attempts based

on the structural similarity or equivalence of queries, perhaps offering insight into

84

problem-solving patterns shared by multiple students. Several additional possible

avenues for future work are described in the following sections.

7.2.1 Curriculum Mapping & Dynamic Exercise Assignment

The existing set of lab exercises is already quite large and significant overlap

exists: the same concepts and concept combinations are often repeated, as shown

in Tables D.1, D.2, and D.3. To accommodate further expansion in the exercise

set, and to address the possibility of student fatigue due to repetition, the Lab

365 tool could dynamically assign exercises. In this way SQL concepts could

be methodically introduced, practiced, and reinforced following the “curriculum

mapping” approach advocated by Hausman [17]. If a student has successfully

mastered a given concept, the system could skip (for that student) the remaining

exercises designed around the already-mastered concept. Or, if a student is unable

to solve exercises related to a certain concept combination, the system could

reinforce each individual concept, then present additional exercises related to

the concept combination with which the student struggled. Dynamic exercise

assignment and curriculum mapping could be a powerful way to promote mastery

of SQL without overwhelming students with a huge volume of practice exercises.

7.2.2 Formalizing Concept Associations

Section 5.9 identified frequently-occurring subsets of SQL concepts in students’

correct responses. Following from this initial analysis, additional data analysis

should be performed to determine how success on fundamental concepts trans-

lates into mastery of more advanced concepts. Such analysis would be particu-

larly valuable for the concepts that appear in the difficult exercises identified in

85

Sections 5.3, 5.4, and 5.5. Identification of SQL concepts that predict success on

on the most difficult exercises would permit further fine-tuning of labs and other

instructional material.

7.2.3 Automatic Error Detection

To improve the granularity of our error analysis, particularly with regard to

semantic and logical errors, it would be useful to include in our Lab 365 tool au-

tomatic classification of errors, based on the taxonomy proposed by Taiaplus [35]

and adopted in this thesis. Automatic classification of errors would require some

combination of SQL parsing and construction of multiple database instances (or

“hidden tests”) to expose errors. Doing so would have the added benefit of pro-

viding to students concrete examples of the subtle ways in which an apparently-

correct SQL can, in fact, be invalid.

7.2.4 Further Investigation of Terminal Attempts

As described in Section 5.6.3, when a student does not submit a correct response

for a given exercise, the nature of the final attempt(s) submitted can offer insight.

In some cases, however, the final attempt does not clearly represent an error or

misunderstanding. Instead, the final attempt may be an exploratory query of

some sort that is not intended as a solution. In these situations, tracing back

through the lead-up to final attempts could offer valuable information about the

problem-solving process. Developing an improved understanding of the various

reasons why students have difficulty formulating valid SQL queries was the stated

goal of this thesis. We believe that a detailed understanding of student difficulties

will allow the teaching and learning environment to be improved. The nature of

86

terminal or persistent errors may well offer key insight into factors that impede

the learning process.

7.2.5 Measuring the Impact of Lecture

This thesis focused primarily on the learning process as demonstrated through

practical lab exercises. However, significant learning also take place in lecture

sessions and impromptu question-and-answer sessions during labs and instructor

office hours. Future investigations could include analysis of lecturing styles, de-

livery methods, or even the use of specific examples. All of these factors (and

more) undoubtedly impact student learning and could extend in many interesting

ways the baseline analysis presented in this thesis.

87

BIBLIOGRAPHY

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-

sociation rules in large databases. In Proceedings of the 20th International

Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San Fran-

cisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[2] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond

Lister. Students’ syntactic mistakes in writing seven different types of sql

queries and its application to predicting students’ success. In Proceedings

of the 47th ACM Technical Symposium on Computing Science Education,

SIGCSE ’16, pages 401–406, New York, NY, USA, 2016. ACM.

[3] Stefan Brass and Christian Goldberg. Proving the safety of sql queries. In

Proceedings of the Fifth International Conference on Quality Software, QSIC

’05, pages 197–204, Washington, DC, USA, 2005. IEEE Computer Society.

[4] Stefan Brass and Christian Goldberg. Semantic errors in sql queries: A quite

complete list. J. Syst. Softw., 79(5):630–644, May 2006.

[5] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo.

Developing a computer science concept inventory for introductory program-

ming. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education, SIGCSE ’16, pages 364–369, New York, NY, USA, 2016.

ACM.

[6] L. Cagliero, L. De Russis, L. Farinetti, and T. Montanaro. Improving the

effectiveness of sql learning practice: A data-driven approach. In 2018 IEEE

42nd Annual Computer Software and Applications Conference (COMPSAC),

volume 01, pages 980–989, July 2018.

88

[7] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured en-

glish query language. In Proceedings of the 1974 ACM SIGFIDET (Now

SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET

’74, pages 249–264, New York, NY, USA, 1974. ACM.

[8] HOCK C. CHAN, BERNARD C.Y. TAN, and KWOK-KEE WEI. Three

important determinants of user performance for database retrieval. Int. J.

Hum.-Comput. Stud., 51(5):895–918, November 1999.

[9] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu.

Demonstration of the cosette automated sql prover. In Proceedings of the

2017 ACM International Conference on Management of Data, SIGMOD ’17,

pages 1591–1594, New York, NY, USA, 2017. ACM.

[10] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. Hottsql:

Proving query rewrites with univalent sql semantics. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2017, pages 510–524, New York, NY, USA, 2017.

ACM.

[11] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, June 1970.

[12] RALPH D’AGOSTINO and E. S. PEARSON. Tests for departure from

normality. Empirical results for the distributions of b2 and b1. Biometrika,

60(3):613–622, 12 1973.

[13] Michael V. Ellis. Repeated measures designs. The Counseling Psychologist,

27(4):552–578, 1999.

89

[14] D. L. Evans, G. L. Gray, S. Krause, J. Martin, C. Midkiff, B. M. No-

taros, M. Pavelich, D. Rancour, T. Reed-Rhoads, P. Steif, R. Streveler, and

K. Wage. Progress on concept inventory assessment tools. In 33rd Annual

Frontiers in Education, 2003. FIE 2003., volume 1, pages T4G–1, Nov 2003.

[15] Sally Fincher, Josh Tenenberg, and Anthony Robins. Research design: Nec-

essary bricolage. In Proceedings of the Seventh International Workshop on

Computing Education Research, ICER ’11, pages 27–32, New York, NY,

USA, 2011. ACM.

[16] Paolo Guagliardo and Leonid Libkin. A formal semantics of sql queries, its

validation, and applications. Proc. VLDB Endow., 11(1):27–39, September

2017.

[17] Jerome J. Hausman. Mapping as an approach to curriculum planning. Cur-

riculum Theory Network, 4(2-3):192–198, 1974.

[18] Colin A. Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios Tsintsi-

fas. Automated assessment and experiences of teaching programming. J.

Educ. Resour. Comput., 5(3), September 2005.

[19] Michael Hilton and David S. Janzen. On teaching arrays with test-driven

learning in webide. In Proceedings of the 17th ACM Annual Conference

on Innovation and Technology in Computer Science Education, ITiCSE ’12,

pages 93–98, New York, NY, USA, 2012. ACM.

[20] J. L. Hodges. The significance probability of the smirnov two-sample test.

Ark. Mat., 3(5):469–486, 01 1958.

[21] Chun-Nan Hsu and Craig A. Knoblock. Advances in knowledge discovery

and data mining. chapter Using Inductive Learning to Generate Rules for

90

Semantic Query Optimization, pages 425–445. American Association for Ar-

tificial Intelligence, Menlo Park, CA, USA, 1996.

[22] http://users.csc.calpoly.edu/ dekhtyar/. Alexander dekhtyar (professional

website). http://users.csc.calpoly.edu/~dekhtyar/. Accessed: 2019-

05-03.

[23] Gokhan Kul, Duc Thanh Luong, Ting Xie, Varun Chandola, Oliver Kennedy,

and Shambhu Upadhyaya. Similarity measures for sql query clustering. IEEE

Transactions on Knowledge and Data Engineering, Jul 2018.

[24] Jacob Thornton Mark Otto and Bootstrap contributors. Bootstrap: Html,

css, and js library. https://getbootstrap.com/. Accessed: 2019-04-23.

[25] Antonija Mitrovic, Brent Martin, and Michael Mayo. Using evaluation to

shape its design: Results and experiences with sql-tutor. User Modeling and

User-Adapted Interaction, 12(2-3):243–279, March 2002.

[26] Stellan Ohlsson. Constraint-based student modeling. In Jim E. Greer and

Gordon I. McCalla, editors, Student Modelling: The Key to Individual-

ized Knowledge-Based Instruction, pages 167–189, Berlin, Heidelberg, 1994.

Springer Berlin Heidelberg.

[27] Andrew Pavlo and Matthew Aslett. What’s really new with newsql? SIG-

MOD Rec., 45(2):45–55, September 2016.

[28] Inc. Pivotal. Spring boot: an open source java-based framework. https:

//spring.io/projects/spring-boot. Accessed: 2019-03-13.

[29] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tun-

nell Wilson. Harnessing the wisdom of the classes: Classsourcing and ma-

chine learning for assessment instrument generation. In Proceedings of the

91

http://users.csc.calpoly.edu/~dekhtyar/
https://getbootstrap.com/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

50th ACM Technical Symposium on Computer Science Education, SIGCSE

’19, pages 606–612, New York, NY, USA, 2019. ACM.

[30] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Joe Lin. Sqlator: An

online sql learning workbench. SIGCSE Bull., 36(3):223–227, June 2004.

[31] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational

expressions with the union and difference operators. J. ACM, 27(4):633–

655, October 1980.

[32] John B. Smelcer. User errors in database query composition. Int. J. Hum.-

Comput. Stud., 42(4):353–381, April 1995.

[33] XB Software. Webix: Javascript ui library and framework for cross-platform

web development. https://webix.com/. Accessed: 2019-04-19.

[34] Maŕıa José Suárez-Cabal and Javier Tuya. Using an sql coverage measure-

ment for testing database applications. In Proceedings of the 12th ACM

SIGSOFT Twelfth International Symposium on Foundations of Software En-

gineering, SIGSOFT ’04/FSE-12, pages 253–262, New York, NY, USA, 2004.

ACM.

[35] Toni Taipalus and Piia Perälä. What to expect and what to focus on in sql

query teaching. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education, SIGCSE ’19, pages 198–203, New York, NY,

USA, 2019. ACM.

[36] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors and compli-

cations in sql query formulation. ACM Trans. Comput. Educ., 18(3):15:1–

15:29, August 2018.

92

https://webix.com/

[37] Margus Veanes, Pavel Grigorenko, Peli Halleux, and Nikolai Tillmann. Sym-

bolic query exploration. In Proceedings of the 11th International Conference

on Formal Engineering Methods: Formal Methods and Software Engineering,

ICFEM ’09, pages 49–68, Berlin, Heidelberg, 2009. Springer-Verlag.

[38] Charles Welty and David W. Stemple. Human factors comparison of a pro-

cedural and a nonprocedural query language. ACM Trans. Database Syst.,

6(4):626–649, December 1981.

93

A Experimental Materials

A.1 Informed Consent Form

INFORMED CONSENT TO PARTICIPATE IN A RESEARCH PROJECT:

Study of Student Learning of SQL

INTRODUCTION

This form asks for your agreement to participate in a research project studying

student learning of the Structured Query Language (SQL). Your participation

involves completion of laboratory exercises using a web-based application. It

is expected that your participation will take no extra time commitment from

you. There are no risks anticipated with your participation. Others may benefit

from your participation. If you are interested in participating, please review the

following information.

PURPOSE OF THE STUDY AND PROPOSED BENEFITS

The purpose of the study is to gather and analyze data related to the processes

students follow when solving SQL query exercises in an introductory database

course.

Potential benefits associated with the study include enhancements to lecture

and lab materials for future students.

94

YOUR PARTICIPATION

If you agree to participate, you will allow your work on the lab exercises in CSC

365 to be used in analysis for this research. Study data will be gathered through

normal use of the CSC 365 course lab environment.

Your participation will require no additional time commitment from you,

beyond regular course lab activities.

Your course grade will not be affected by your decision whether or not to

participate in this study.

PROTECTIONS AND POTENTIAL RISKS

Please be aware that you are not required to participate in this research, refusal

to participate will not involve any penalty or loss of benefits to which you are

otherwise entitled, and you may discontinue your participation at any time. The

researcher may terminate your participation at any time for the following reasons:

when sufficient data has been collected. There are no risks anticipated with your

participation in this study.

Your confidentiality will be protected. All exported data used for analysis

will be anonymized. Personally identifiable information (PII) will be excluded

from all exports.

RESOURCES AND CONTACT INFORMATION

If you should experience any negative outcomes from this research, please be

aware that you may contact Andrew Von Dollen (avondoll@calpoly.edu) or Alex

Dekhtyar (dekhtyar@calpoly.edu)

95

This research is being conducted by Andrew Von Dollen (Graduate Teaching

Associate) and Alex Dekhtyar (Professor) in the Department of Computer Science

at Cal Poly, San Luis Obispo. If you have questions regarding this study or would

like to be informed of the results when the study is completed, please contact the

researcher(s) at avondoll@calpoly.edu or dekhtyar@calpoly.edu.

If you have concerns regarding the manner in which the study is conducted,

you may contact Dr. Michael Black, Chair of the Cal Poly Institutional Review

Board, at (805) 756-2894, mblack@calpoly.edu, or Ms. Debbie Hart, Compliance

Officer, at (805) 756-1508, dahart@calpoly.edu.

AGREEMENT TO PARTICIPATE

If you agree to voluntarily participate in this research project as described, please

indicate your agreement by signing below. Please retain a copy of this form for

your reference, and thank you for your participation in this research.

Signature of Volunteer Printed Name Date

B Lab Databases

This section provides an Entity-Relationship (E-R) Diagram and brief description

for each of the lab databases studied in this thesis. All databases contain hand-

crafted or public domain data, and were originally created by Alex Dekhtyar

[22].

96

AIRLINES is a graph-oriented database which contains information about

airlines, airports, and flights between 100 different airports.

��������

����������

�	
�����������

�������������

�����������������

��	�
��

�������

��������������

�����������

�	
�����������

�����������������

��������������

��	�
��

������

��������������

���� �����������

!���"��������

#�$���	�����������

��	�
��

Figure .1: AIRLINES Database - ER Diagram

97

The BAKERY database contains sales detail for a small, fictitious bakery. It

is organized using a simple Online Transaction Processing (OLTP) structure, in

which customer receipts have a on-to-many relationship with receipt line items.

���������

����������	

��������������	

����������������	

	
�����

����

�����������	

��������������	

������������	

�������
���

	
�����

�����

�� ��!�������	

����"���������	

�����������	

	
�����

��������

��#�$���������	

%���&���&���

�#������������	

	
�����

Figure .2: BAKERY Database - ER Diagram

98

CARS is a normalized database containing statistics about 406 car models

produced worldwide between 1970 and 1982. The data were originally distributed

by the American Statistical Association (ASA) Committee on Statistical Graph-

ics in 1983 for a visualization competition.

�������

����������

	
������

�����������������

��������������

������������������

���� !��������

�""����#!������

$�#���������

����	�

��������

����������

	#%������&��'�

�(���#)�����&�*'�

��(�!����������

����	�

��������

����������

�#)�����&��'�

����	�

�������

����������

�#)�����&�*+�

���!����!��������

����	�

����

����������

	��������&��'�

	#%�����&�,+�

����	�

����

����������

	#%����������

	��������&��'�

����	�

Figure .3: CARS Database - ER Diagram

99

The CSU database includes fee and enrollment data from the California State

University’s 23 campus system of higher education. This database uses a nor-

malized Online Analytical Processing (OLAP) structure.

��������

����������

	
�������	�������

���
��������	�������

	�����	�������

��
 ��������

�	
����

�����

��
 ��������

	
�������������

��! �����������

�	
����

����	

	
�������������

"�����#�����������

��
 ��������

$!��������

% ��������

�	
����

�������	��

����������

�
������	����&��

�	
����

�	�����	��

	
�������������

��
 ��������

'� �##����������

(�'�(�)��

�	
����

�������

	
�������������

��
 ��������

(�'�(�)��

�	
����

����

	
�������������

��
 ��������

*����������

�	
����

Figure .4: CSU Database - ER Diagram

100

INN contains simple OLTP-structured reservation data for a fictional Bed &

Breakfast, including room information and reservation details.

����������	�

��������	

�

�������	��

������������

������������

����������

����������������	
��

�����������������	
��

� �!������	

�

"� �����	

�

	�����

����

��� ������	��

��������������	#$�

%� �����	

�

&� �'(���������)�

��*�������	

�

&���+����������

 �����������	,$�

	�����

Figure .5: INN Database - ER Diagram

101

KATZENJAMMER is a fully normalized database that contains data related

to the musical career of a Norwegian pop band named Kaztenjammer.

������

����������	

�
��������������	

����������	

���������������	

�������������������	

��	
�
�

��	

���������	

�
� !�������������	

�� �!�������������	

��	
�
�

�������
���

"#!$�������	

%�!�����������	

�! ����!������������	

��	
�
�

�
�������

"#!$�������	

%�!�����������	

"��$&#
�
#!�����������	

��	
�
� �����

"#!$���������	

�
�����������'�	

��	
�
�

���������

������������	

&#
�
#!�������	

"#!$�������	

��	
�
�

�����

"#!$�������	

%�!�����������	

�#(����������������	

��	
�
�

Figure .6: KATZENJAMMER Database - ER Diagram

102

The MARATHON database contains a single table that holds results (placing,

pace, etc.) from a half marathon in New England. This database represents a

“universal table” design, and is the focus of exercises that relate to the self-join

SQL concept.

��������

��������	
���

��	����	���

�����	���

�������������	
���

������������
��

������	
���

�������
��

�� ��� �����	
���

!��"#�����$����
%&�

'�"#�����$����
%&�

	�(��$����
%&�

�#�#�����
%�

��	
�
�

Figure .7: MARATHON Database - ER Diagram

103

STUDENTS is a simple normalized database that contains data about stu-

dents, classrooms, and teachers at a small, fictitious elementary school.

����

���������	
��
�����

����������	
��
�����

�������������

�����������������

����	��

��
����

�����	
��
�����

������	
��
�����

�����������������

����	��

Figure .8: STUDENTS Database - ER Diagram

104

WINE is a partially normalized database that holds ratings for a variety of

wines produced in California.

�����������	

����������

	

���������	���	�����

��������	���	�����

������	���	�����

	����	���	�����

��	�	���	�� �

�����	

����	

����������

!�
���	���	�����

�������	���	�����

�����	

����

"�������������

!�
���	���	�����

"�������	���	���#�

	

���������	���	�����

�$���	���	�����

����%���������

&��'��()*	�

�'�����������

������������

�����	

Figure .9: WINE Database - ER Diagram

105

C Classification of Lab Exercises

The tables in this section (Figures .10, .11, and .12) depict the distribution of con-

cepts across lab exercises studied in this thesis. A gray square indicates that the

exercise (horizontal rows) includes a particular SQL concept (vertical columns).

The rightmost and bottom columns hold row and column totals. Row totals cor-

respond to the number of concepts in a given exercise; column totals represent a

count of the number of exercises which include each concept. Concepts marked

with an asterisk (*) were discussed by Ahadi et al. in [2]; those marked with a

plus sign (+) were described by Taipalus et al. in [36]. Concepts with neither an

asterisk nor a plus sign represent SQL features that were not specifically discussed

in prior work.

D Lab Exercises

The following section lists English information requests assigned to students as

lab exercises. These lab exercises were originally prepared by Alex Dekhtyar [22].

They were used with permission during the study described in this thesis.

Each lab completed by students consists of 30-40 similar exercises. The list

presented to students is grouped according to the subject database (BAKERY,

CSU, LATZENAJMMER) and sorted based on expected difficulty within that

database. As an illustration, BAKERY-1 is expected to be the easiest exercise

within the BAKERY dataset, while BAKERY-4 requires more difficult concepts

or an advanced combination of SQL features. Students are permitted to complete

lab exercises within each lab in any order they choose. The brief assignment for

Lab A reads:

106

Write SQL queries that return information as requested. Each infor-
mation need must be met with a single SQL statement. Do not use
grouping (GROUP BY) or aggregation for these queries. You may re-
fer only to codes/names included in the question. Do not use numeric
IDs or key values.

In the exercises below, text that appears in monospaced type are values that

appear in the database instances. Students are expected to use these values

(rather than underlying primary key or ID values) when constructing filter ex-

pressions.

D.1 Selected Exercises from Lab A

AIRLINES-1 Find all airlines that have at least one flight out of AXX airport. Report

the full name and the abbreviation of each airline. Report each name only

once. Sort the airlines in alphabetical order.

AIRLINES-2 Find all destinations served from the AXX airport by Northwest. Report

flight number, airport code and the full name of the airport. Sort in as-

cending order by flight number.

AIRLINES-3 Find all *other* destinations that are accessible from AXX on only Northwest

flights with exactly one change-over. Report pairs of flight numbers, air-

port codes for the final destinations, and full names of the airports sorted

in alphabetical order by the airport code.

AIRLINES-4 Report all pairs of airports served by both Frontier and JetBlue. Each

airport pair must be reported exactly once (if a pair X,Y is reported, then

a pair Y,X is redundant and should not be reported).

107

AIRLINES-5 Find all airports served by ALL five of the airlines listed below: Delta,

Frontier, USAir, UAL and Southwest. Report just the airport codes, sorted

in alphabetical order.

BAKERY-1 Find all Chocolate flavored items on the menu whose price is under $5.00.

For each item output the flavor, the name (food type) of the item, and

the price. Sort your output in descending order by price (highest price to

lowest).

BAKERY-2 Report the prices of the following items (a) any Cookie priced above $1.10,

(b) any Lemon flavored items, or (c) any Apple flavored item except for the

Pie. Output the flavor, the name (food type) and the price of each pastry.

Sort the output in alphabetical order by the flavor and then pastry name.

BAKERY-3 Find all types of Cookie purchased by KIP ARNN during the month of

October 2007. Report each cookie type (flavor) exactly once in alpha-

betical order by flavor.

CSU-1 Report all campuses from Los Angeles county. Output the full name of

campus in alphabetical order.

CSU-2 For each year between 1994 and 2000 (inclusive) report the number of

students who graduated from California Maritime Academy. Output the

year and the number of degrees granted. Sort output by year.

CSU-3 Report undergraduate and graduate enrollments (as two numbers) in Mathematics,

Engineering and Computer and Info. Sciences disciplines for both Polytechnic

universities of the CSU system in 2004. Output the name of the campus,

the discipline and the number of graduate and the number of undergradu-

108

ate students enrolled. Sort output by campus name, and by discipline for

each campus.

CSU-4 Report graduate enrollments in 2004 in Agriculture and Biological

Sciences for any university that offers graduate studies in both disciplines.

Report one line per university (with the two grad. enrollment numbers in

separate columns), sort universities in descending order by the number of

Agriculture graduate students.

CSU-5 Find all disciplines and campuses where graduate enrollment in 2004 was

at least three times higher than undergraduate enrollment. Report cam-

pus names and discipline names. Sort output by campus name, then by

discipline name in alphabetical order.

CSU-6 Report the total amount of money collected from student fees (use the full-

time equivalent enrollment for computations) at Fresno State University

for each year between 2002 and 2004 inclusively, and the amount of money

(rounded to the nearest penny) collected from student fees per each full-

time equivalent faculty. Output the year, the two computed numbers sorted

chronologically by year.

D.2 Selected Exercises from Lab B

Lab B covers grouping, aggregation, and grouping restriction. Many exercises in

this lab also build on concepts introduced in Lab A, including joins and expres-

sions. The brief lab assignment reads:

Each information request in this lab can (and must) be represented
by either a single SELECT statement (possibly including aggregate
operations, GROUP BY and HAVING clauses), or by a number of
SELECT statements combined using the UNION operator.

109

INN-1 For each room, report the total revenue for all stays and the average rev-

enue per stay generated by stays in the room that began in the months of

September, October and November. Sort output in descending order by

total revenue. Output full room names.

INN-2 Report the total number of reservations that began on Friday, and the

total revenue they brought in.

INN-5 For each room report how many nights in calendar year 2010 the room

was occupied. Report the room code, the full name of the room and the

number of occupied nights. Sort in descending order by occupied nights.

(Note: it has to be number of nights in 2010. The last reservation in each

room can go beyond December 31, 2010, so the extra nights in 2011 need

to be deducted).

KATZENJAMMER-1 For each performer (by first name) report how many times she sang lead

vocals on a song. Sort output in descending order by the number of leads.

KATZENJAMMER-2 Report how many different instruments each performer plays on songs from

the album Le Pop. Sort the output by the first name of the performers.

KATZENJAMMER-4 Report how many times each performer (other than Anne-Marit) played

bass balalaika on the songs where Anne-Marit was positioned on the

left side of the stage. Sort output alphabetically by the name of the

performer.

KATZENJAMMER-6 Report all instruments (in alphabetical order) that were played by three or

more people.

110

D.3 Selected Exercises from Lab C

Lab C covers all SQL language features, with an emphasis on nested SQL. Most

exercises in Lab C are also designed to reinforce concepts introduced in Labs A

and B. The brief lab assignment reads:

Each information need must be addressed with a SELECT statement
that returns a single result set. This statement may include multiple
levels of nesting, grouping and aggregation, and/or UNION. You are
permitted to use any ANSI-standard SQL feature, as well as MySQL-
specific scalar functions.

BAKERY-1 Find all customers who did not make a purchase between October 5 and

October 11 (inclusive) of 2007. Output first and last name in alphabetical

order by last name.

BAKERY-8 For every type of Cake report the customer(s) who purchased it the largest

number of times during the month of October 2007. Report the name of

the pastry (flavor, food type), the name of the customer (first, last), and the

number of purchases made. Sort output in descending order on the number

of purchases, then in alphabetical order by last name of the customer, then

by flavor.

BAKERY-9 Output the names of all customers who made multiple purchases (more than

one receipt) on the latest day in October on which they made a purchase.

Report names (first, last) of the customers and the earliest day in October

on which they made a purchase, sorted in chronological order.

MARATHON-1 Find the state(s) with the largest number of participants. List state code(s)

sorted alphabetically.

111

MARATHON-2 Find all towns in Rhode Island (RI) which fielded more female runners than

male runners for the race. Report the names of towns, sorted alphabetically.

MARATHON-5 For each town in Connecticut report the total number of male and the

total number of female runners. Both numbers shall be reported on the

same line. If no runners of a given gender from the town participated in

the marathon, report 0. Sort by number of total runners from each town

(in descending order) then by town.

112

Si
ng

le
-T

ab
le

 *
M

ul
ti-

Ta
bl

e
*

Or
de

rin
g

+
Ex

pr
es

sio
ns

 +
Ex

pr
es

sio
ns

 W
ith

 N
es

tin
g

+
M

ul
tip

le
 S

ou
rc

e
Ta

bl
es

 +
Gr

ou
pi

ng
 *

Gr
ou

pi
ng

 R
es

tri
ct

io
ns

 *
Ag

gr
eg

at
e

Fu
nc

tio
ns

 *
Co

m
pu

te
d

Gr
ou

pi
ng

Pa

ra
m

et
er

 D
ist

in
ct

 +
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t A
gg

 V
al

ue

Ag
gF

n
Ev

al
ua

te
d

Ag
ai

ns
t C

ol
um

n
Va

lu
e

+
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t C
on

st
an

t V
al

ue
 +

Do
es

 N
ot

 E
xi

st
 +

Un
co

rre
la

te
d

Su
bq

ue
ry

 *
Co

rre
la

te
d

Su
bq

ue
ry

 +
Eq

ua
l S

ub
qu

er
ie

s +
Se

lf-
Jo

in
 *

Sc
al

ar
 F

un
ct

io
ns

Co

m
pu

te
d

Se
le

ct
io

n

Co
m

pu
te

d
Pr

oj
ec

tio
n

Di

st
in

ct
 P

ro
je

ct
io

n

Se
t O

pe
ra

tio
ns

No

n-
Eq

ui
-Jo

in

Re
la

tio
na

l D
iv

isi
on

Pi

vo
t

Fu
ll

Ou
te

r J
oi

n

Co
un

t o
f C

on
ce

pt
s w

ith
in

 E
xe

rc
ise

 AIRLINES-1
 AIRLINES-2
 AIRLINES-3
 AIRLINES-4
 AIRLINES-5
 AIRLINES-6
 BAKERY-1
 BAKERY-2
 BAKERY-3
 BAKERY-4
 BAKERY-5
 BAKERY-6

 CSU-1
 CSU-2
 CSU-3
 CSU-4
 CSU-5
 CSU-6
 CSU-7
 INN-1
 INN-2
 INN-3
 INN-4
 INN-5
 INN-6

 KATZENJAMMER-1
 KATZENJAMMER-2
 KATZENJAMMER-3
 KATZENJAMMER-4
 KATZENJAMMER-5
 KATZENJAMMER-6
 KATZENJAMMER-7
 KATZENJAMMER-8

 MARATHON-1
 MARATHON-2
 MARATHON-3
 MARATHON-4
 MARATHON-5
 STUDENTS-1
 STUDENTS-2
 STUDENTS-3
 STUDENTS-4
 STUDENTS-5

Count of Exercises with Concept

3
4
5
4
6
7
2
3
3
4
3
4
2
3
4
6
5
5
6
2
5
4
6
6
4
3
4
4
3
4
4
6
5
3
3
3
4
4
2
3
2
2
5

10 33 43 33 2 15 0 0 0 0 0 0 0 0 0 0 0 0 10 2 1 5 10 0 2 2 2 0

Figure .10: Lab A Exercises and Concepts

113

Si
ng

le
-T

ab
le

 *
M

ul
ti-

Ta
bl

e
*

Or
de

rin
g

+
Ex

pr
es

sio
ns

 +
Ex

pr
es

sio
ns

 W
ith

 N
es

tin
g

+
M

ul
tip

le
 S

ou
rc

e
Ta

bl
es

 +
Gr

ou
pi

ng
 *

Gr
ou

pi
ng

 R
es

tri
ct

io
ns

 *
Ag

gr
eg

at
e

Fu
nc

tio
ns

 *
Co

m
pu

te
d

Gr
ou

pi
ng

Pa

ra
m

et
er

 D
ist

in
ct

 +
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t A
gg

 V
al

ue

Ag
gF

n
Ev

al
ua

te
d

Ag
ai

ns
t C

ol
um

n
Va

lu
e

+
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t C
on

st
an

t V
al

ue
 +

Do
es

 N
ot

 E
xi

st
 +

Un
co

rre
la

te
d

Su
bq

ue
ry

 *
Co

rre
la

te
d

Su
bq

ue
ry

 +
Eq

ua
l S

ub
qu

er
ie

s +
Se

lf-
Jo

in
 *

Sc
al

ar
 F

un
ct

io
ns

Co

m
pu

te
d

Se
le

ct
io

n

Co
m

pu
te

d
Pr

oj
ec

tio
n

Di

st
in

ct
 P

ro
je

ct
io

n

Se
t O

pe
ra

tio
ns

No

n-
Eq

ui
-Jo

in

Re
la

tio
na

l D
iv

isi
on

Pi

vo
t

Fu
ll

Ou
te

r J
oi

n

Co
un

t o
f C

on
ce

pt
s w

ith
in

 E
xe

rc
ise

 AIRLINES-1
 AIRLINES-2
 AIRLINES-3
 AIRLINES-4
 BAKERY-1
 BAKERY-2
 BAKERY-3
 BAKERY-4
 BAKERY-5

 CSU-1
 CSU-2
 CSU-3
 CSU-4
 INN-1
 INN-2
 INN-3
 INN-4
 INN-5

 KATZENJAMMER-1
 KATZENJAMMER-2
 KATZENJAMMER-3
 KATZENJAMMER-4
 KATZENJAMMER-5
 KATZENJAMMER-6

 MARATHON-1
 MARATHON-2
 MARATHON-3
 MARATHON-4
 MARATHON-5
 STUDENTS-1
 STUDENTS-2
 STUDENTS-3
 STUDENTS-4

Count of Exercises with Concept

5

5

5

6

6

5

7

9

6

7

6

6

5

8

5

6

6

6

5

6

5

7

6

7

4

5

6

4

8

4

6

5

5

15 18 30 19 2 8 27 10 32 2 9 0 0 0 0 0 0 0 5 7 0 7 0 0 1 0 0 0

Figure .11: Lab B Exercises and Concepts

114

Si
ng

le
-T

ab
le

 *
M

ul
ti-

Ta
bl

e
*

Or
de

rin
g

+
Ex

pr
es

sio
ns

 +
Ex

pr
es

sio
ns

 W
ith

 N
es

tin
g

+
M

ul
tip

le
 S

ou
rc

e
Ta

bl
es

 +
Gr

ou
pi

ng
 *

Gr
ou

pi
ng

 R
es

tri
ct

io
ns

 *
Ag

gr
eg

at
e

Fu
nc

tio
ns

 *
Co

m
pu

te
d

Gr
ou

pi
ng

Pa

ra
m

et
er

 D
ist

in
ct

 +
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t A
gg

 V
al

ue

Ag
gF

n
Ev

al
ua

te
d

Ag
ai

ns
t C

ol
um

n
Va

lu
e

+
Ag

gF
n

Ev
al

ua
te

d
Ag

ai
ns

t C
on

st
an

t V
al

ue
 +

Do
es

 N
ot

 E
xi

st
 +

Un
co

rre
la

te
d

Su
bq

ue
ry

 *
Co

rre
la

te
d

Su
bq

ue
ry

 +
Eq

ua
l S

ub
qu

er
ie

s +
Se

lf-
Jo

in
 *

Sc
al

ar
 F

un
ct

io
ns

Co

m
pu

te
d

Se
le

ct
io

n

Co
m

pu
te

d
Pr

oj
ec

tio
n

Di

st
in

ct
 P

ro
je

ct
io

n

Se
t O

pe
ra

tio
ns

No

n-
Eq

ui
-Jo

in

Re
la

tio
na

l D
iv

isi
on

Pi

vo
t

Fu
ll

Ou
te

r J
oi

n

Co
un

t o
f C

on
ce

pt
s w

ith
in

 E
xe

rc
ise

 BAKERY-1
 BAKERY-10

 BAKERY-2
 BAKERY-3
 BAKERY-4
 BAKERY-5
 BAKERY-6
 BAKERY-7
 BAKERY-8
 BAKERY-9

 CSU-1
 CSU-2
 CSU-3
 CSU-4
 CSU-5
 CSU-6
 CSU-7
 INN-1
 INN-2
 INN-3
 INN-4
 INN-5

 KATZENJAMMER-1
 KATZENJAMMER-2
 KATZENJAMMER-3
 KATZENJAMMER-4
 KATZENJAMMER-5
 KATZENJAMMER-6
 KATZENJAMMER-7
 KATZENJAMMER-8

 MARATHON-1
 MARATHON-2
 MARATHON-3
 MARATHON-4
 MARATHON-5
 STUDENTS-1
 STUDENTS-2
 STUDENTS-3
 STUDENTS-4
 STUDENTS-5

Count of Exercises with Concept

5
5
8
5
5
7
6
7
8
9
7
5
7
7
8
8
7
7
10
7
6
10
4
4
7
6
5
5
7
7
7
7
8
8
7
6
7
7
6
8

17 23 26 19 0 8 32 15 33 1 3 18 8 2 5 25 4 12 1 3 0 9 0 1 4 0 0 1

Figure .12: Lab C Exercises and Concepts

115

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	The Relational Data Model
	Relational Algebra
	The Structured Query Language
	Teaching Relational Algebra and SQL
	Related Work
	SQL Concepts and Common Errors
	SQL Semantics and Correctness
	Query Similarity
	SQL Testing and Quality Metrics
	Interactive Lab Environments
	Database Lab Environments
	Concept Inventory Construction and Evaluation

	TOOL IMPLEMENTATION
	Application Overview
	Instructor Features
	User Interface for Students

	METHODOLOGY
	Overview
	Experimental Design
	Lab Assignments and Query Types
	Query Types and SQL Concepts

	Data Set
	Raw Data
	Error Taxonomy

	Error Detection

	RESULTS
	Overview of Results
	Analysis by Instructor
	Lab A Analysis
	Repeated Measures ANOVA
	Lab A Discussion

	Lab B Analysis
	Lab C Analysis
	Consolidated Discussion of Difficult Concepts

	Analysis of Errors
	Common Syntax Errors
	Difficult-to-Resolve Syntax Errors
	Terminal Attempts

	Quantifying Student Learning
	Principal SQL Concepts
	Concept Associations

	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	Recommendations for Lab Improvement
	Concept Combinations
	Recently-Added SQL Features
	SQL Interpretation Skill
	Emphasis on ANSI-Standard SQL

	Future Work
	Curriculum Mapping & Dynamic Exercise Assignment
	Formalizing Concept Associations
	Automatic Error Detection
	Further Investigation of Terminal Attempts
	Measuring the Impact of Lecture

	BIBLIOGRAPHY
	EXPERIMENTAL MATERIALS
	Informed Consent Form

	LAB DATABASES
	CLASSIFICATION OF LAB EXERCISES
	LAB EXERCISES
	Selected Exercises from Lab A
	Selected Exercises from Lab B
	Selected Exercises from Lab C

