15 research outputs found
True wild type and recombinant wild type cytochrome c oxidase from Paracoccus denitrificans show a 20-fold difference in their catalase activity
The four subunit (SU) aa3 cytochrome c oxidase (CcO) from Paracoccus denitrificans is one of the terminal enzymes of the respiratory chain. Its binuclear active center, residing in SU I, contains heme a3 and CuB. Apart from its oxygen reductase activity, the protein possesses a peroxidase and a catalase activity. To compare variants and the wild type (WT) protein in a more stringent way, a recombinant (rec.) WT strain was constructed, carrying the gene for SU I on a low copy number plasmid. This rec. WT showed no difference in oxygen reductase activity compared to the American Type Culture Collection (ATCC) WT CcO but surprisingly its catalase activity was increased by a factor of 20. The potential over-production of SU I might impair the correct insertion of heme a3 and CuB because of a deficiency in metal inserting chaperones. An altered distance between heme a3 and CuB and variations in protein structure are possible reasons for the observed increased catalase activity. The availability of chaperones was improved by cloning the genes ctaG and surf1c on the same plasmid as the SU I gene. The new rec. WT CcO showed in fact a reduced catalase activity. Using differential scanning calorimetry no significant difference in thermal stability between the ATCC WT CcO and the rec. WT CcO was detected. However, upon aging the thermal stability of the rec. WT CcO was reduced compared to that of the ATCC WT CcO pointing to a decreased structural stability of the rec. WT CcO
Development of a Thermofluor assay for stability determination of membrane proteins using the Na<sup>+</sup>/H<sup>+</sup>antiporter NhaA and cytochrome c oxidase
Crystallization of membrane proteins is very laborious and time-consuming, yielding well diffracting crystals in only a minority of projects. Therefore, a rapid and easy method is required to optimize the conditions for initial crystallization trials. The Thermofluor assay has been developed as such a tool. However, its applicability to membrane proteins is still limited because either large hydrophilic extramembranous regions or cysteine residues are required for the available dyes to bind and therefore act as reporters in this assay. No probe has been characterized to discriminate between the hydrophobic surfaces of detergent micelles, folded and detergent-covered membrane proteins and denatured membrane proteins. Of the four dyes tested, the two dyes 1-anilinonaphthalene-8-sulfonic acid (ANS) and SYPRO Orange were systematically screened for compatibility with five detergents commonly used in the crystallization of membrane proteins. ANS showed the weakest interactions with all of the detergents screened. It was possible to determine the melting temperature of the sodium ion/proton antiporter NhaA, a small membrane protein without large hydrophilic domains, over a broad pH range using ANS. Furthermore, cytochrome c oxidase (CcO) was used to apply the method to a four-subunit membrane protein complex. It was possible to obtain preliminary information on the temperature-dependent denaturation of this complex using the dye ANS. Application of the dye 7-diethylamino-3-(4´-maleimidylphenyl)-4-methylcoumarin (CPM) to CcO in the Thermofluor assay enabled the determination of the melting temperatures of distinct subunits of the complex
Resonance Raman Characterization of the Ammonia-Generated Oxo Intermediate of Cytochrome c Oxidase from Paracoccus denitrificans
A novel oxo state of cytochrome c oxidase from Paracoccus denitrif icans generated by successive addition of excess H2O2 and ammonia was investigated using resonance Raman (RR) spectroscopy. Addition of ammonia to the H2O2-generated artificial F state resulted in an upshift of the oxoferryl stretching vibration from 790 to 796 cm−1, indicating that ammonia influences ligation of the heme-bound oxygen in the binuclear center. Concomitantly performed RR measurements in the high-frequency region between 1300 and 1700 cm−1 showed a high-spin to low-spin transition of heme a3 upon generation of the F state that was not altered by addition of ammonia. Removal of H2O2 by addition of catalase resulted in the disappearance of the oxoferryl stretching vibration and major back transformation of heme −1 into the high-spin state. The ratio of high-spin to low-spin states was identical for intermediates created with and without ammonia, leading to the conclusion that ammonia does not interact directly with heme −1. Only for the ammonia-created state was a band at 612 nm observed in the UV−visible difference spectrum that was shifted to 608 nm after addition of catalase. Our results support the hypothesis by von der Hocht et al. [von der Hocht, I., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 3964−3969] that addition of ammonia creates a novel oxo intermediate state called PN where ammonia binds to CuB once the oxo intermediate F state has been formed
Conclusioni
Cytochrome aa<sub>3</sub> from Paracoccus denitrificans and cytochrome ba<sub>3</sub> from Thermus thermophilus, two distinct members of the heme−copper oxidase superfamily, were immobilized on electrodes modified with gold nanoparticles. This procedure allowed us to achieve direct electron transfer between the enzyme and the gold nanoparticles and to obtain evidence for different electrocatalytic properties of the two enzymes. The pH dependence and thermostability reveal that the enzymes are highly adapted to their native environments. These results suggest that evolution resulted in different solutions to the common problem of electron transfer to oxygen
Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. This redox-driven proton pump catalyzes the four-electron reduction of molecular oxygen to water, one of the most fundamental processes in biology. Elucidation of the intermediate structures in the catalytic cycle is crucial for understanding both the mechanism of oxygen reduction and its coupling to proton pumping. Using CcO from Paracoccus denitrificans, we demonstrate that the artificial F state, classically generated by reaction with an excess of hydrogen peroxide, can be converted into a new P state (in contradiction to the conventional direction of the catalytic cycle) by addition of ammonia at pH 9. We suggest that ammonia coordinates directly to CuB in the binuclear active center in this P state and discuss the chemical structures of both oxoferryl intermediates F and P. Our results are compatible with a superoxide bound to CuB in the F state