1,543 research outputs found
Theoretical Study of Sodium and Potassium Resonance Lines Pressure Broadened by Helium Atoms
We perform fully quantum mechanical calculations in the binary approximation
of the emission and absorption profiles of the sodium - and potassium
- resonance lines under the influence of a helium perturbing gas. We
use carefully constructed potential energy surfaces and transition dipole
moments to compute the emission and absorption coefficients at temperatures
from 158 to 3000 K. Contributions from quasi-bound states are included. The
resulting red and blue wing profiles agree well with previous theoretical
calculations and with experimental measurements.Comment: 16 figure
Edge-Based Compartmental Modeling for Infectious Disease Spread Part III: Disease and Population Structure
We consider the edge-based compartmental models for infectious disease spread
introduced in Part I. These models allow us to consider standard SIR diseases
spreading in random populations. In this paper we show how to handle deviations
of the disease or population from the simplistic assumptions of Part I. We
allow the population to have structure due to effects such as demographic
detail or multiple types of risk behavior the disease to have more complicated
natural history. We introduce these modifications in the static network
context, though it is straightforward to incorporate them into dynamic
networks. We also consider serosorting, which requires using the dynamic
network models. The basic methods we use to derive these generalizations are
widely applicable, and so it is straightforward to introduce many other
generalizations not considered here
Electrode Positioning and Montage in Transcranial Direct Current Stimulation
Transcranial direct current stimulation (tDCS) is a technique that has been intensively investigated in the past decade as this method offers a non-invasive and safe alternative to change cortical excitability2. The effects of one session of tDCS can last for several minutes, and its effects depend on polarity of stimulation, such as that cathodal stimulation induces a decrease in cortical excitability, and anodal stimulation induces an increase in cortical excitability that may last beyond the duration of stimulation6. These effects have been explored in cognitive neuroscience and also clinically in a variety of neuropsychiatric disorders – especially when applied over several consecutive sessions4. One area that has been attracting attention of neuroscientists and clinicians is the use of tDCS for modulation of pain-related neural networks3,5. Modulation of two main cortical areas in pain research has been explored: primary motor cortex and dorsolateral prefrontal cortex7. Due to the critical role of electrode montage, in this article, we show different alternatives for electrode placement for tDCS clinical trials on pain; discussing advantages and disadvantages of each method of stimulation
Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules
We explore the rich internal structure of Cs_2 Feshbach molecules. Pure
ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude
of weakly bound states is populated by elaborate magnetic-field ramping
techniques. Our methods use different Feshbach resonances as input ports and
various internal level crossings for controlled state transfer. We populate
higher partial-wave states of up to eight units of rotational angular momentum
(l-wave states). We investigate the molecular structure by measurements of the
magnetic moments for various states. Avoided level crossings between different
molecular states are characterized through the changes in magnetic moment and
by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present
a precise measurement of the magnetic-field dependent binding energy of the
weakly bound s-wave state that is responsible for the large background
scattering length of Cs. This state is of particular interest because of its
quantum-halo character.Comment: 15 pages, 12 figures, 4 table
Effect of tibial plateau angle < 5° on ground reaction forces in dogs treated with tibial plateau leveling osteotomy for cranial cruciate ligament rupture up to 6 months postoperatively
Tibial plateau leveling osteotomy (TPLO) has been commonly performed in dogs with cranial cruciate ligament disease (CCLD) since the introduction by Slocum and Slocum (1993). To reduce cranial tibial thrust the TPLO technique aims for a postoperative tibial plateau angle (TPA) of 5–6.5°. In recent years studies have shown that a postoperative TPA below 5° could be beneficial regarding stifle stability or meniscal load. Dogs with CCLD that were treated with TPLO, were examined preoperatively, six weeks, three and six months postoperatively with gait analysis and grouped according to their postoperative TPA. The aims of study was (1) to evaluate if dogs with a postoperative TPA below 5° would have a faster limb function recovery up to six months postoperatively as measured objectively with ground reaction forces (GRFs) and (2) to determine whether the postoperative TPA correlates with the outcome measurements. Dogs with TPA 0.05). No correlation for the postoperative TPA 5° and <5° TPA together), indicating that with lower postoperative TPA dogs had a more symmetrical gait in hindlimbs SIPVF (r = 0.144, p < 0.05) and SIVI (r = 0.189, p < 0.01). The study indicates that a lower postoperative TPA could be beneficial regarding hindlimb symmetry indices of GRFs
Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition
Clustering is the propensity of nodes that share a common neighbour to be connected. It is ubiquitous in many networks but poses many modelling challenges. Clustering typically manifests itself by a higher than expected frequency of triangles, and this has led to the principle of constructing networks from such building blocks. This approach has been generalised to networks being constructed from a set of more exotic subgraphs. As long as these are fully connected, it is then possible to derive mean-field models that approximate epidemic dynamics well. However, there are virtually no results for non-fully connected subgraphs. In this paper, we provide a general and automated approach to deriving a set of ordinary differential equations, or mean-field model, that describes, to a high degree of accuracy, the expected values of system-level quantities, such as the prevalence of infection. Our approach offers a previously unattainable degree of control over the arrangement of subgraphs and network characteristics such as classical node degree, variance and clustering. The combination of these features makes it possible to generate families of networks with different subgraph compositions while keeping classical network metrics constant. Using our approach, we show that higher-order structure realised either through the introduction of loops of different sizes or by generating networks based on different subgraphs but with identical degree distribution and clustering, leads to non-negligible differences in epidemic dynamics
A statistical network analysis of the HIV/AIDS epidemics in Cuba
The Cuban contact-tracing detection system set up in 1986 allowed the
reconstruction and analysis of the sexual network underlying the epidemic
(5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168
edges), shedding light onto the spread of HIV and the role of contact-tracing.
Clustering based on modularity optimization provides a better visualization and
understanding of the network, in combination with the study of covariates. The
graph has a globally low but heterogeneous density, with clusters of high
intraconnectivity but low interconnectivity. Though descriptive, our results
pave the way for incorporating structure when studying stochastic SIR epidemics
spreading on social networks
Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes. Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets
Constellations: A New Paradigm for Earth Observations
The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have a replenishment strategy as some satellites age and eventually leave the constellation. This will ensure overlap of observations, thus providing continuous, calibrated science data over a much longer time period. Thoughts on the evolution of the A-Train will also be presented
Towards reliable diagnostics of prostate cancer via breath
Early detection of cancer is a key ingredient for saving many lives. Unfortunately, cancers of the urogenital system are difficult to detect at early stage. The existing noninvasive diagnostics of prostate cancer (PCa) suffer from low accuracy (< 70%) even at advanced stages. In an attempt to improve the accuracy, a small breath study of 63 volunteers representing three groups: (1) of 19 healthy, (2) 28 with PCa, (3) with 8 kidney cancer (KC) and 8 bladder cancer (BC) was performed. Ultrabroadband mid-infrared Fourier absorption spectroscopy revealed eight spectral ranges (SRs) that differentiate the groups. The resulting accuracies of supervised analyses exceeded 95% for four SRs in distinguishing (1) vs (2), three for (1) vs (3) and four SRs for (1) vs (2) + (3). The SRs were then attributed to volatile metabolites. Their origin and involvement in urogenital carcinogenesis are discussed
- …