157 research outputs found

    Activation of PKC-ε counteracts maturation and apoptosis of HL-60 myeloid leukemic cells in response to TNF family members

    Get PDF
    Protein kinase C (PKC)-ε, a component of the serine/threo-nine PKC family, has been shown to influence the survival and differentiation pathways of normal hematopoietic cells. Here, we have modulated the activity of PKC-ε with specific small molecule activator or inhibitor peptides. PKC-ε inhibitor and activator peptides showed modest effects on HL-60 maturation when added alone, but PKC-ε activator peptide significantly counteracted the pro-maturative activity of tumor necrosis factor (TNF)-α towards the monocytic/macrophagic lineage, as evaluated in terms of CD14 surface expression and morphological analyses. Moreover, while PKC-ε inhibitor peptide showed a reproducible increase of TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis, PKC-ε activator peptide potently counteracted the pro-apoptotic activity of TRAIL. Taken together, the anti-maturative and anti-apoptotic activities of PKC-ε envision a potentially important proleukemic role of this PKC family member

    Complications and mortality of Cushing’s disease: report on data collected over a 20-year period at a referral centre

    Get PDF
    Context: Cushing’s disease (CD) is rare condition burdened by several systemic complications correlated to higher mortality rates. The primary goal of clinicians is to achieve remission, but it is unclear if treatment can also increase life expectancy. Aim: To assess the prevalence of cortisol-related complications and mortality in a large cohort of CD patients attending a single referral centre. Materials and methods: The clinical charts of CD patients attending a referral hospital between 2001 and 2021 were reviewed. Results: 126 CD patients (median age at diagnosis 39 years) were included. At the last examination, 78/126 (61.9%) of the patients were in remission regardless of previous treatment strategies. Patients in remission showed a significant improvement in all the cardiovascular (CV) comorbidities (p < 0.05). The CV events were more frequent in older patients (p = 0.003), smokers and persistent CD groups (p < 0.05). Most of the thromboembolic (TE) and infective events occurred during active stages of the disease. The CV events were the most frequent cause of death. The standardized mortality ratio (SMR) resulted increased in persistent cases at the last follow-up (SMR 4.99, 95%CI [2.15; 9.83], p < 0.001) whilst it was not higher in those in remission (SMR 1.66, 95%CI [0.34; 4.85], p = 0.543) regardless of the timing or number of treatments carried out. A younger age at diagnosis (p = 0.005), a microadenoma (p = 0.002), and remission status at the last follow-up (p = 0.027) all increased survival. Furthermore, an elevated number of comorbidities, in particular arterial hypertension, increased mortality rates. Conclusions: Patients with active CD presented a poor survival outcome. Remission restored the patients’ life expectancy regardless of the timing or the types of treatments used to achieve it. Persistent CD-related comorbidities remained major risk factors

    TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets?

    Get PDF
    Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease

    An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    Get PDF
    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a crown. This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast’s persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms

    Endothelial Cells Obtained from Patients Affected by Chronic Venous Disease Exhibit a Pro-Inflammatory Phenotype

    Get PDF
    The inflammatory properties of vein endothelium in relation to chronic venous disease (CVD) have been poorly investigated. Therefore, new insights on the characteristics of large vein endothelium would increase our knowledge of large vessel physiopathology. METHODOLOGY/PRINCIPAL FINDINGS: Surgical specimens of veins were obtained from the tertiary venous network (R3) and/or saphenous vein (SF) of patients affected by CVD and from control individuals. Highly purified venous endothelial cell (VEC) cultures obtained from CVD patients were characterized for morphological, phenotypic and functional properties compared to control VEC. An increase of CD31/PECAM-1, CD146 and ICAM-1 surface levels was documented at flow cytometry in pathological VEC with respect to normal controls. Of note, the strongest expression of these pro-inflammatory markers was observed in VEC obtained from patients with more advanced disease. Similarly, spontaneous cell proliferation and resistance to starvation was higher in pathological than in normal VEC, while the migratory response of VEC showed an opposite trend, being significantly lower in VEC obtained from pathological specimens. In addition, in keeping with a higher baseline transcriptional activity of NF-kB, the release of the pro-inflammatory cytokines osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) was higher in pathological VEC cultures with respect to control VEC. Interestingly, there was a systemic correlation to these in vitro data, as demonstrated by higher serum OPG and VEGF levels in CVD patients with respect to normal healthy controls. CONCLUSION/SIGNIFICANCE: Taken together, these data indicate that large vein endothelial cells obtained from CVD patients exhibit a pro-inflammatory phenotype, which might significantly contribute to systemic inflammation in CVD patients

    Endo-β-1,3-glucanase (GH16 Family) from Trichoderma harzianum Participates in Cell Wall Biogenesis but Is Not Essential for Antagonism Against Plant Pathogens

    Get PDF
    This is the published version. Available on open access from MDPI via the DOI in this recordTrichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. β-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have β-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-β-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.CNPq Rede Pró-Centro OesteState of São Paulo Research Foundation (FAPESP

    Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    Get PDF
    Background: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology and Principal Findings: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2) was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses
    • …
    corecore