637 research outputs found

    Assessing inflow rates in atomic cooling halos: implications for direct collapse black holes

    Full text link
    Supermassive black holes are not only common in the present-day galaxies, but billion solar masses black holes also powered z6z\geq 6 quasars. One efficient way to form such black holes is the collapse of a massive primordial gas cloud into a so-called direct collapse black hole. The main requirement for this scenario is the presence of large accretion rates of 0.1 M/yr\rm \geq 0.1~M_{\odot}/yr to form a supermassive star. It is not yet clear how and under what conditions such accretion rates can be obtained. The prime aim of this work is to determine the mass accretion rates under non-isothermal collapse conditions. We perform high resolution cosmological simulations for three primordial halos of a few times 107 M\rm 10^7~M_{\odot} illuminated by an external UV flux, J21=1001000\rm J_{21}=100-1000. We find that a rotationally supported structure of about parsec size is assembled, with an aspect ratio between 0.251\rm 0.25 - 1 depending upon the thermodynamical properties. Rotational support, however, does not halt collapse, and mass inflow rates of 0.1 M/yr\rm \sim 0.1~M_{\odot}/yr can be obtained in the presence of even a moderate UV background flux of strength J21100\rm J_{21} \geq 100. To assess whether such large accretion rates can be maintained over longer time scales, we employed sink particles, confirming the persistence of accretion rates of 0.1 M/yr\rm \sim 0.1~M_{\odot}/yr. We propose that complete isothermal collapse and molecular hydrogen suppression may not always be necessary to form supermassive stars, precursors of black hole seeds. Sufficiently high inflow rates can be obtained for UV flux J21=5001000\rm J_{21}=500-1000, at least for some cases. This value brings the estimate of the abundance of direct collapse black hole seeds closer to that high redshift quasars.Comment: Accepted for publication in MNRAS, comments are still welcom

    The Merging History of Massive Black Holes

    Full text link
    We investigate a hierarchical structure formation scenario describing the evolution of a Super Massive Black Holes (SMBHs) population. The seeds of the local SMBHs are assumed to be 'pregalactic' black holes, remnants of the first POPIII stars. As these pregalactic holes become incorporated through a series of mergers into larger and larger halos, they sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. A simple model in which the damage done to a stellar cusps by decaying BH pairs is cumulative is able to reproduce the observed scaling relation between galaxy luminosity and core size. An accretion model connecting quasar activity with major mergers and the observed BH mass-velocity dispersion correlation reproduces remarkably well the observed luminosity function of optically-selected quasars in the redshift range 1<z<5. We finally asses the potential observability of the gravitational wave background generated by the cosmic evolution of SMBH binaries by the planned space-born interferometer LISA.Comment: 4 pages, 2 figures, Contribute to "Multiwavelength Cosmology", Mykonos, Greece, June 17-20, 200

    Unresolved X-ray background: clues on galactic nuclear activity at z>6

    Get PDF
    We study, by means of dedicated simulations of massive black hole build-up, the possibility to constraint the existence and nature of the AGN population at z>6 with available and planned X-ray and near infrared space telescopes. We find that X-ray deep-field observations can set important constraints to the faint-end of the AGN luminosity function at very high redshift. Planned X-ray telescopes should be able to detect AGN hosting black holes with masses down to >10^5 Msun (i.e., X-ray luminosities in excess of 10^42 erg s^-1), and can constrain the evolution of the population of massive black hole at early times (6<z<10). We find that this population of AGN should contribute substantially (~25%) to the unresolved fraction of the cosmic X-ray background in the 0.5-10 keV range, and that a significant fraction (~3-4%) of the total background intensity would remain unaccounted even after future X-ray observations. As byproduct, we compute the expected UV background from AGN at z>6 and we discuss the possible role of AGN in the reionization of the Universe at these early epochs, showing that AGN alone can provide enough ionizing photons only in the (improbable) case of an almost completely homogeneous inter-galactic medium. Finally, we show that super-Eddington accretion, suggested by the observed QSOs at z>6, must be a very rare event, confined to black holes living in the highest density peaks.Comment: 9 pages, 7 figures, MNRAS in pres

    The Formation and Evolution of Massive Black Holes

    Full text link
    The past 10 years have witnessed a change of perspective in the way astrophysicists think about massive black holes (MBHs), which are now considered to have a major role in the evolution of galaxies. This appreciation was driven by the realization that black holes of millions solar masses and above reside in the center of most galaxies, including the Milky Way. MBHs also powered active galactic nuclei known to exist just a few hundred million years after the Big Bang. Here, I summarize the current ideas on the evolution of MBHs through cosmic history, from their formation about 13 billion years ago to their growth within their host galaxies.Comment: Review for Science Special Issue on black hole

    Cosmography with strong lensing of LISA gravitational wave sources

    Full text link
    LISA might detect gravitational waves from mergers of massive black hole binaries strongly lensed by intervening galaxies (Sereno et al. 2010). The detection of multiple gravitational lensing events would provide a new tool for cosmography. Constraints on cosmological parameters could be placed by exploiting either lensing statistics of strongly lensed sources or time delay measurements of lensed gravitational wave signals. These lensing methods do not need the measurement of the redshifts of the sources and the identification of their electromagnetic counterparts. They would extend cosmological probes to redshift z <= 10 and are then complementary to other lower or higher redshift tests, such as type Ia supernovae or cosmic microwave background. The accuracy of lensing tests strongly depends on the formation history of the merging binaries, and the related number of total detectable multiple images. Lensing amplification might also help to find the host galaxies. Any measurement of the source redshifts would allow to exploit the distance-redshift test in combination with lensing methods. Time-delay analyses might measure the Hubble parameter H_0 with accuracy of >= 10 km s^{-1}Mpc^{-1}. With prior knowledge of H_0, lensing statistics and time delays might constrain the dark matter density (delta Omega_M >= 0.08, due to parameter degeneracy). Inclusion of our methods with other available orthogonal techniques might significantly reduce the uncertainty contours for Omega_M and the dark energy equation of state.Comment: 10 pages, 10 figures, in press on MNRA

    On the orientation and magnitude of the black hole spin in galactic nuclei

    Full text link
    Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropically oriented, or coherent, i.e. when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the black hole growth evolving contemporarily mass, spin modulus a and spin direction. We discover the occurrence of two regimes. An early phase (M <~ 10 million solar masses) in which rapid alignment of the black hole spin direction to the disk angular momentum in each single episode leads to erratic changes in the black hole spin orientation and at the same time to large spins (a ~ 0.8). A second phase starts when the black hole mass increases above >~ 10 million solar masses and the accretion disks carry less mass and angular momentum relatively to the hole. In the absence of a preferential direction the black holes tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the black hole spin can increase up to a ~ 1 for very massive black holes (M >~ 100 million solar masses), and its direction is stable over the many accretion cycles. We discuss the implications that our results have in the realm of the observations of black hole spin and jet orientations.Comment: 14 pages, 7 figures, accepted for publication in Ap

    A path to radio-loudness through gas-poor galaxy mergers and the role of retrograde accretion

    Full text link
    In this proceeding we explore a pathway to radio-loudness under the hypothesis that retrograde accretion onto giant spinning black holes leads to the launch of powerful jets, as seen in radio loud QSOs and recently in LAT/Fermi and BAT/Swift Blazars. Counter-rotation of the accretion disc relative to the BH spin is here associated to gas-poor galaxy mergers progenitors of giant (missing-light) ellipticals. The occurrence of retrograde accretion enters as unifying element that may account for the radio-loudness/galaxy morphology dichotomy observed in AGN.Comment: To appear in the proceedings of the conference "Accretion and Ejection in AGN: A global view, June 22-26 2009 - Como, Italy

    New observational Constraints on the Growth of the First Supermassive Black Holes

    Full text link
    We constrain the total accreted mass density in supermassive black holes at z>6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Msec observations of the Chandra Deep Field South, we achieve the most restrictive constraints on total black hole growth in the early Universe. We estimate an accreted mass density <1000Mo Mpc^-3 at z~6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive - as yet undetected - host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured and/or is due to black hole mergers as opposed to accretion or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high redshift seed formation models.Comment: ApJ Accepted, 10 pages, 7 figures, 1 table, in emulateapj forma

    Limits on the high redshift growth of massive black holes

    Get PDF
    We place firm upper limits on the global accretion history of massive black holes at z>5 from the recently measured unresolved fraction of the cosmic X-ray background. The maximum allowed unresolved intensity observed at 1.5 keV implies a maximum accreted-mass density onto massive black holes of rho_acc < 1.4E4 M_sun Mpc^{-3} for z>5. Considering the contribution of lower-z AGNs, the value reduces to rho_acc < 0.66E4 M_sun Mpc^{-3}. The tension between the need for the efficient and rapid accretion required by the observation of massive black holes already in place at z>7 and the strict upper limit on the accreted mass derived from the X-ray background may indicate that black holes are rare in high redshift galaxies, or that accretion is efficient only for black holes hosted by rare galaxies.Comment: 5 pages, 1 figure, published in A&A Letter
    corecore