36 research outputs found

    Development of pre-conceptual ITER-type ICRF antenna design for DEMO

    Get PDF
    ICRF antenna development for DEMO for the pre-conceptual phase is carried out by merging the existing knowledge about multi-strap ITER, JET and ASDEX Upgrade antennas. Many aspects are taken over and adapted to DEMO, including the mechanical design and RF performance optimization strategies. The minimization of ICRF-specific plasma-wall interactions is aimed at by optimizing the feeding power balance, a technique already proven in practice. Technological limits elaborated for the components of ITER ICRF system serve as a guideline in the current design process. Several distinctive aspects, like antenna mounting, integration with the neighbouring components or adaptation for neutron environment, are tackled individually for DEMO

    Explanation of core ion cyclotron emission from beam-ion heated plasmas in ASDEX Upgrade by the magnetoacoustic cyclotron instability

    Get PDF
    Bursts of ion cyclotron emission (ICE), with spectral peaks corresponding to the hydrogen cyclotron harmonic frequencies in the plasma core are detected from helium plasmas heated by sub-Alfvénic beam-injected hydrogen ions in the ASDEX Upgrade tokamak. Based on the fast ion distribution function obtained from TRANSP/NUBEAM code, together with a linear analytical theory of the magnetoacoustic cyclotron instability (MCI), the growth rates of MCI could be calculated. In our theoretical and experimental studies, we found that the excitation mechanism of core ICE driven by sub-Alfvénic beam ions in ASDEX Upgrade is MCI as the time evolution of MCI growth rates is broadly consistent with measured ICE amplitudes. The MCI growth rate is very sensitive to the energy and velocity distribution of beam-injected ions and is suppressed by the slowing down of the dominant beam-injected ion velocity and the spreading of the fast ion distribution profile. This may help to account for the experimental observation that ICE signals disappear within ~3 ms after the NBI turn-off time, much faster than the slowing down times of the beam ions

    Exploring fusion-reactor physics with high-power electron cyclotron resonance heating on ASDEX Upgrade

    Get PDF
    The electron cyclotron resonance heating (ECRH) system of the ASDEX Upgrade tokomak has been upgraded over the last 15 years from a 2MW, 2 s, 140 GHz system to an 8MW, 10 s, dual frequency system (105/140 GHz). The power exceeds the L/H power threshold by at least a factor of two, even for high densities, and roughly equals the installed ion cyclotron range of frequencies power. The power of both wave heating systems together (>10MW in the plasma) is about half of the available neutral beam injection (NBI) power, allowing significant variations of torque input, of the shape of the heating profile and of Qe/Qi, even at high heating power. For applications at a low magnetic field an X3-heating scheme is routinely in use. Such a scenario is now also forseen for ITER to study the first H-modes at one third of the full field. This versatile system allows one to address important issues fundamental to a fusion reactor: H-mode operation with dominant electron heating, accessing low collisionalities in full metal devices (also related to suppression of edge localized modes with resonant magnetic perturbations), influence of Te/Ti and rotational shear on transport, and dependence of impurity accumulation on heating profiles. Experiments on all these subjects have been carried out over the last few years and will be presented in this contribution. The adjustable localized current drive capability of ECRH allows dedicated variations of the shape of the q-profile and the study of their influence on non-inductive tokamak operation (so far at q95_{95}>5.3). The ultimate goal of these experiments is to use the experimental findings to refine theoretical models such that they allow a reliable design of operational schemes for reactor size devices. In this respect, recent studies comparing a quasi-linear approach (TGLF) with fully non-linear modeling (GENE) of non-inductive high-beta plasmas will be reported

    Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    No full text
    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re‐design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operatio
    corecore