198 research outputs found

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses

    Cell-Intrinsic NF-κB Activation Is Critical for the Development of Natural Regulatory T Cells in Mice

    Get PDF
    regulatory T (Treg) cells develop in the thymus and represent a mature T cell subpopulation critically involved in maintaining peripheral tolerance. The differentiation of Treg cells in the thymus requires T cell receptor (TCR)/CD28 stimulation along with cytokine-promoted Foxp3 induction. TCR-mediated nuclear factor kappa B (NF-κB) activation seems to be involved in differentiation of Treg cells because deletion of components of the NF-κB signaling pathway, as well as of NF-κB transcription factors, leads to markedly decreased Treg cell numbers in thymus and periphery. thymic Treg precursors and their further differentiation into mature Treg cells. Treg cell development could neither be completely rescued by the addition of exogenous Interleukin 2 (IL-2) nor by the presence of wild-type derived cells in adoptive transfer experiments. However, peripheral NF-κB activation appears to be required for IL-2 production by conventional T cells, thereby participating in Treg cell homeostasis. Moreover, pharmacological NF-κB inhibition via the IκB kinase β (IKKβ) inhibitor AS602868 led to markedly diminished thymic and peripheral Treg cell frequencies.Our results indicate that Treg cell-intrinsic NF-κB activation is essential for thymic Treg cell differentiation, and further suggest pharmacological NF-κB inhibition as a potential therapeutic approach for manipulating this process

    Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils:gingipains, apoptotic cell removal & inflammation

    Get PDF
    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, whilst apoptotic cells and their derived secretome were shown to inhibit TNF-α induced expression by P.gingivalis LPS, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together these data indicate that P.gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms including rapid, potent gingipain-mediated inflammation coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease

    Intravenous apoptotic spleen cell infusion induces a TGF-beta-dependent regulatory T-cell expansion.: Apoptosis and regulatory T cells

    No full text
    International audienceApoptotic leukocytes are endowed with immunomodulatory properties that can be used to enhance hematopoietic engraftment and prevent graft-versus-host disease (GvHD). This apoptotic cell-induced tolerogenic effect is mediated by host macrophages and not recipient dendritic cells or donor phagocytes present in the bone marrow graft as evidenced by selective cell depletion and trafficking experiments. Furthermore, apoptotic cell infusion is associated with TGF-beta-dependent donor CD4+CD25+ T-cell expansion. Such cells have a regulatory phenotype (CD62L(high) and intracellular CTLA-4+), express high levels of forkhead-box transcription factor p3 (Foxp3) mRNA and exert ex vivo suppressive activity through a cell-to-cell contact mechanism. In vivo CD25 depletion after apoptotic cell infusion prevents the apoptotic cell-induced beneficial effects on engraftment and GvHD occurrence. This highlights the role of regulatory T cells in the tolerogenic effect of apoptotic cell infusion. This novel association between apoptosis and regulatory T-cell expansion may also contribute to preventing deleterious autoimmune responses during normal turnover

    Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells

    Get PDF
    Background:In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species.Method:The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout.Results:Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.Conclusions:This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response
    corecore