1,605 research outputs found

    Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Get PDF
    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs. Thus, individuals with D4 receptor polymorphisms might show enhanced reinforcing responses to MP and AMPH and attenuated locomotor response to AMPH.Fil: Thanos, P. K.. NIAAA Intramural Program; Estados Unidos. Brookhaven National Laboratory; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Bermeo, C.. Brookhaven National Laboratory; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Suchland, K. L.. Oregon Health & Science University; Estados UnidosFil: Wang, G. J.. Brookhaven National Laboratory; Estados UnidosFil: Grandy, David K.. Oregon Health & Science University; Estados UnidosFil: Volkow, N. D.. NIAAA Intramural Program; Estados Unido

    Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels

    Get PDF
    Objective Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. Methods The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Results Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Conclusions Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications

    Decreased dopamine activity predicts relapse in methamphetamine abusers.

    Get PDF
    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes

    Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism

    Get PDF
    In alcohol-dependent (AD) patients, alcohol cues induce strong activations in brain areas associated with alcohol craving and relapse, such as the nucleus accumbens (NAc) and amygdala. However, little is known about the influence of depressive symptoms, which are common in AD patients, on the brain’s reactivity to alcohol cues. The methylation state of the dopamine transporter gene (DAT) has been associated with alcohol dependence, craving and depression, but its influence on neural alcohol cue reactivity has not been tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients and 17 healthy controls (HCs) using functional magnetic resonance imaging and assessed the influence of depressive symptoms and peripheral DAT methylation in these responses. We show that alcoholics with low Beck’s Depression Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala than those with mild/moderate depression scores (n=9), though subjective perception of craving was higher in those with mild/moderate depression scores. We corroborated a higher DAT methylation in AD patients than HCs, and showed higher DAT methylation in AD patients with mild/moderate than low depression scores. Within the AD cohort, higher methylation predicted craving and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we show that amygdala cue reactivity correlated with craving and DAT methylation only in AD patients with low depression scores. These findings suggest that depressive symptoms and DAT methylation are associated with alcohol craving and associated brain processes in alcohol dependence, which may have important consequences for treatment. Moreover, peripheral DAT methylation may be a clinically relevant biomarker in AD patients

    Addiction to Highly Pleasurable Food as a Cause of the Childhood Obesity Epidemic: A Qualitative Internet Study

    Get PDF
    An interactive, open-access website was launched as an overweight intervention for teens and preteens, and was generally unsuccessful. An understanding was needed of the reasons for weight loss failures versus successes in youth using the site. Bulletin board posts, chat room transcripts, and poll responses were prospectively gathered and qualitatively and quantitatively analyzed over a ten-year period. Many respondents, ages 8 to 21, exhibited DSM-IV substance dependence (addiction) criteria when describing their relationship with highly pleasurable foods. Further research is needed on possible addiction to highly pleasurable foods in youth. Incorporating substance dependence methods may improve the success rate in combating the childhood obesity epidemic

    Substance Use Disorders in Schizophrenia—Clinical Implications of Comorbidity

    Get PDF
    Nearly half of the people suffering from schizophrenia also present with a lifetime history of substance use disorders (SUD), a rate that is much higher than the one seen among unaffected individuals. This phenomenon suggests that the factors influencing SUD risk in schizophrenia may be more numerous and/or complex than those modulating SUD risk in the general population. It is critically important to address this comorbidity because SUD in schizophrenic patients is associated with poorer clinical outcomes and contributes significantly to their morbidity and mortality

    Public understandings of addiction: where do neurobiological explanations fit?

    Get PDF
    Developments in the field of neuroscience, according to its proponents, offer the prospect of an enhanced understanding and treatment of addicted persons. Consequently, its advocates consider that improving public understanding of addiction neuroscience is a desirable aim. Those critical of neuroscientific approaches, however, charge that it is a totalising, reductive perspective–one that ignores other known causes in favour of neurobiological explanations. Sociologist Nikolas Rose has argued that neuroscience, and its associated technologies, are coming to dominate cultural models to the extent that 'we' increasingly understand ourselves as 'neurochemical selves'. Drawing on 55 qualitative interviews conducted with members of the Australian public residing in the Greater Brisbane area, we challenge both the 'expectational discourses' of neuroscientists and the criticisms of its detractors. Members of the public accepted multiple perspectives on the causes of addiction, including some elements of neurobiological explanations. Their discussions of addiction drew upon a broad range of philosophical, sociological, anthropological, psychological and neurobiological vocabularies, suggesting that they synthesised newer technical understandings, such as that offered by neuroscience, with older ones. Holding conceptual models that acknowledge the complexity of addiction aetiology into which new information is incorporated suggests that the impact of neuroscientific discourse in directing the public's beliefs about addiction is likely to be more limited than proponents or opponents of neuroscience expect

    Methylphenidate Normalizes Fronto-Striatal Underactivation During Interference Inhibition in Medication-Naïve Boys with Attention-Deficit Hyperactivity Disorder

    Get PDF
    Youth with attention deficit hyperactivity disorder (ADHD) have deficits in interference inhibition, which can be improved with the indirect catecholamine agonist methylphenidate (MPH). Functional magnetic resonance imaging was used to investigate the effects of a single dose of MPH on brain activation during interference inhibition in medication-naïve ADHD boys. Medication-naïve boys with ADHD were scanned twice, in a randomized, double-blind design, under either a single clinical dose of MPH or placebo, while performing a Simon task that measures interference inhibition and controls for the oddball effect of low-frequency appearance of incongruent trials. Brain activation was compared within patients under either drug condition. To test for potential normalization effects of MPH, brain activation in ADHD patients under either drug condition was compared with that of healthy age-matched comparison boys. During incongruent trials compared with congruent–oddball trials, boys with ADHD under placebo relative to controls showed reduced brain activation in typical areas of interference inhibition, including right inferior prefrontal cortex, left striatum and thalamus, mid-cingulate/supplementary motor area, and left superior temporal lobe. MPH relative to placebo upregulated brain activation in right inferior prefrontal and premotor cortices. Under the MPH condition, patients relative to controls no longer showed the reduced activation in right inferior prefrontal and striato-thalamic regions. Effect size comparison, furthermore, showed that these normalization effects were significant. MPH significantly normalized the fronto-striatal underfunctioning in ADHD patients relative to controls during interference inhibition, but did not affect medial frontal or temporal dysfunction. MPH therefore appears to have a region-specific upregulation effect on fronto-striatal activation
    corecore