828 research outputs found

    Statistical performance analysis with dynamic workload using S-NET

    Get PDF
    Volkmar Wieser, Philip K. F. Hölzenspies, Michael Roßbory, and Raimund Kirner, 'Statistical performance analysis with dynamic workload using S-NET'. Paper presented at the Workshop on Feedback-Directed Compiler Optimization for Multi-Core Architectures. Paris, France 23-25 January 2012In this paper the ADVANCE approach for engineering con- current software systems with well-balanced hardware ef- ficiency is adressed using the stream processing language S-Net. To obtain the cost information in the concurrent system the metrics throughput, latency, and jitter are evalu- ated by analyzing generated synthetical data as well as using an industrial related application in the future. As fall-out an Eclipse plugin for S-Net has been developed to provide sup- port for syntax highlighting, content assistance, hover help, and more, for easier and faster development. The presented results of the current work are on the one hand an indicator for the status quo of the ADVANCE vision and on the other hand used to improve the applied statistical analysis tech- niques within ADVANCE. Like the ADVANCE project, this work is still under development, but further improvements and speedups are expected in the near future

    The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation

    Get PDF
    Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI). Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course. Study Design: Case series; Level of evidence, 4. Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft. Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy. Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI

    One size fits all? Calibrating an ocean biogeochemistry model for different circulations

    Get PDF
    Global biogeochemical ocean models are often tuned to match the observed distributions and fluxes of inorganic and organic quantities. This tuning is typically carried out “by hand”. However, this rather subjective approach might not yield the best fit to observations, is closely linked to the circulation employed and is thus influenced by its specific features and even its faults. We here investigate the effect of model tuning, via objective optimisation, of one biogeochemical model of intermediate complexity when simulated in five different offline circulations. For each circulation, three of six model parameters have been adjusted to characteristic features of the respective circulation. The values of these three parameters – namely, the oxygen utilisation of remineralisation, the particle flux parameter and potential nitrogen fixation rate – correlate significantly with deep mixing and ideal age of North Atlantic Deep Water (NADW) and the outcrop area of Antarctic Intermediate Waters (AAIW) and Subantarctic Mode Water (SAMW) in the Southern Ocean. The clear relationship between these parameters and circulation characteristics, which can be easily diagnosed from global models, can provide guidance when tuning global biogeochemistry within any new circulation model. The results from 20 global cross-validation experiments show that parameter sets optimised for a specific circulation can be transferred between similar circulations without losing too much of the model's fit to observed quantities. When compared to model intercomparisons of subjectively tuned, global coupled biogeochemistry–circulation models, each with different circulation and/or biogeochemistry, our results show a much lower range of oxygen inventory, oxygen minimum zone (OMZ) volume and global biogeochemical fluxes. Export production depends to a large extent on the circulation applied, while deep particle flux is mostly determined by the particle flux parameter. Oxygen inventory, OMZ volume, primary production and fixed-nitrogen turnover depend more or less equally on both factors, with OMZ volume showing the highest sensitivity, and residual variability. These results show a beneficial effect of optimisation, even when a biogeochemical model is first optimised in a relatively coarse circulation and then transferred to a different finer-resolution circulation model

    Increase in the Tibial Slope Reduces Wear after Medial Unicompartmental Fixed-Bearing Arthroplasty of the Knee

    Get PDF
    Introduction. Unicompartmental arthroplasty of the knee in patients with isolated medial osteoarthritis gives good results, but survival is inferior to that of total knee prosthesis. Knees may fail because positioning of the prosthesis has been suboptimal. The aim of this study was to investigate the influence of the tibial slope on the rate of wear of amedial fixed-bearing unicompartmental knee arthroplasty. Materials and Methods. We simulated wear on a medial fixed-bearing unicompartmental knee prosthesis (Univation) in vitro with a customised, four-station, and servohydraulic knee wear simulator, which exactly reproduced the walking cycle (International Organisation for Standardisation (ISO) 14243-1: 2002(E)). The medial prostheses were inserted with 3 different posterior tibial slopes: 0 degrees, 4 degrees, and 8 degrees (n = 3 in each group). Results. The wear rate decreased significantly between 0 degrees and 4 degrees slope from 10.4 (SD 0.62) mg/million cycles to 3.22 (SD 1.71) mg/million cycles. Increasing the tibial slope to 8 degrees did not significantly change the wear rate. Discussion. As an increase in the tibial slope reduced the wear rate in a fixed-bearing prosthesis, a higher tibial slope should be recommended. However, other factors that are influenced by the tibial slope (e.g.,the tension of the ligament) must also be considered

    Increase in the Tibial Slope Reduces Wear after Medial Unicompartmental Fixed-Bearing Arthroplasty of the Knee

    Get PDF
    Introduction. Unicompartmental arthroplasty of the knee in patients with isolated medial osteoarthritis gives good results, but survival is inferior to that of total knee prosthesis. Knees may fail because positioning of the prosthesis has been suboptimal. The aim of this study was to investigate the influence of the tibial slope on the rate of wear of amedial fixed-bearing unicompartmental knee arthroplasty. Materials and Methods. We simulated wear on a medial fixed-bearing unicompartmental knee prosthesis (Univation) in vitro with a customised, four-station, and servohydraulic knee wear simulator, which exactly reproduced the walking cycle (International Organisation for Standardisation (ISO) 14243-1: 2002(E)). The medial prostheses were inserted with 3 different posterior tibial slopes: 0 degrees, 4 degrees, and 8 degrees (n = 3 in each group). Results. The wear rate decreased significantly between 0 degrees and 4 degrees slope from 10.4 (SD 0.62) mg/million cycles to 3.22 (SD 1.71) mg/million cycles. Increasing the tibial slope to 8 degrees did not significantly change the wear rate. Discussion. As an increase in the tibial slope reduced the wear rate in a fixed-bearing prosthesis, a higher tibial slope should be recommended. However, other factors that are influenced by the tibial slope (e.g.,the tension of the ligament) must also be considered

    Coronary artery bypass grafting: Part 2—optimizing outcomes and future prospects

    Get PDF
    Since first introduced in the mid-1960s, coronary artery bypass grafting (CABG) has become the standard of care for patients with coronary artery disease. Surprisingly, the fundamental surgical technique itself did not change much over time. Nevertheless, outcomes after CABG have dramatically improved over the first 50 years. Randomized trials comparing percutaneous coronary intervention (PCI) to CABG have shown converging outcomes for select patient populations, providing more evidence for wider use of PCI. It is increasingly important to focus on the optimization of the short- and long-term outcomes of CABG and to reduce the level of invasiveness of this procedure. This review provides an overview on how new techniques and widespread consideration of evolving strategies have the potential to optimize outcomes after CABG. Such developments include off-pump CABG, clampless/anaortic CABG, minimally invasive CABG with or without extending to hybrid procedures, arterial revascularization, endoscopic vein harvesting, intraprocedural epiaortic scanning, graft flow assessment, and improved secondary prevention measures. In addition, this review represents a framework for future studies by summarizing the areas that need more rigorous clinical (randomized) evaluatio

    Die Biegestabprothese: ein experimenteller Ansatz zur metaphysären Hüftendoprothetik

    Get PDF
    The aim of our study was to develop a femoral component for total hip arthroplasty that would exclusively anchor in the metaphysis of the femoral neck. To forego trochanteric fixation, the load needs to be transferred to the metaphysis at as many points as possible. A computer simulation model suggested that an implant with a central cylinder and 16 rods aligned along a thread would be the preferable solution. To evaluate primary implantation stability, 14 fresh frozen cadaver femora were used. A special instrument set was developed to allow for centered implantation of the prosthesis without the need to dissect the greater trochanter. For our tests, we used two prototype implants: one made from titanium and the other from a CoCrMo alloy. For the measurement of micromotions at the medial proximal femur, sinusoid dynamic loading with a force between 300 N and 1700 N and a frequency of 1 Hz was employed. In a neutral position of 16 degrees adduction and 9 degrees ante-torsion, the average micronnotions measured were 119 mu m. Despite these convincing in vitro results with regards to primary stability, circular cut-out of the implant, followed by aseptic osteonecrosis, loosening might still occur in a clinical situation. Animal experiments are therefore required to further evaluate this new implant design
    corecore