544 research outputs found

    Direct simulation of ion beam induced stressing and amorphization of silicon

    Full text link
    Using molecular dynamics (MD) simulation, we investigate the mechanical response of silicon to high dose ion-irradiation. We employ a realistic and efficient model to directly simulate ion beam induced amorphization. Structural properties of the amorphized sample are compared with experimental data and results of other simulation studies. We find the behavior of the irradiated material is related to the rate at which it can relax. Depending upon the ability to deform, we observe either the generation of a high compressive stress and subsequent expansion of the material, or generation of tensile stress and densification. We note that statistical material properties, such as radial distribution functions are not sufficient to differentiate between different densities of amorphous samples. For any reasonable deformation rate, we observe an expansion of the target upon amorphization in agreement with experimental observations. This is in contrast to simulations of quenching which usually result in denser structures relative to crystalline Si. We conclude that although there is substantial agreement between experimental measurements and most simulation results, the amorphous structures being investigated may have fundamental differences; the difference in density can be attributed to local defects within the amorphous network. Finally we show that annealing simulations of our amorphized samples can lead to a reduction of high energy local defects without a large scale rearrangement of the amorphous network. This supports the proposal that defects in amorphous silicon are analogous to those in crystalline silicon.Comment: 13 pages, 12 figure

    Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    Get PDF
    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article describes the control of this microscope for lithography via beam steering/blanking electronics and evaluates the high-resolution performance of scanning helium-ion-beam lithography. The authors found that sub-10 nm-half-pitch patterning is feasible. They also measured a point-spread function that indicates a reduction in the micrometer-range proximity effect typical in electron-beam lithography.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease:A Randomized Controlled Trial

    Get PDF
    Background: Studies of physical exercise in patients with Alzheimer’s disease (AD) are few and results have been inconsistent. Objective: To assess the effects of a moderate-to-high intensity aerobic exercise program in patients with mild AD. Methods: In a randomized controlled trial, we recruited 200 patients with mild AD to a supervised exercise group (60-min sessions three times a week for 16 weeks) or to a control group. Primary outcome was changed from baseline in cognitive performance estimated by Symbol Digit Modalities Test (SDMT) in the intention-to-treat (ITT) group. Secondary outcomes included changes in quality of life, ability to perform activities of daily living, and in neuropsychiatric and depressive symptoms. Results: The ITT analysis showed no significant differences between intervention and control groups in change from baseline of SDMT, other cognitive tests, quality of life, or activities of daily living. The change from baseline in Neuropsychiatric Inventory differed significantly in favor of the intervention group (mean: –3.5, 95% confidence interval (CI) –5.8 to –1.3, p = 0.002). In subjects who adhered to the protocol, we found a significant effect on change from baseline in SDMT as compared with the control group (mean: 4.2, 95% CI 0.5 to 7.9, p = 0.028), suggesting a dose-response relationship between exercise and cognition. Conclusions: This is the first randomized controlled trial with supervised moderate-to-high intensity exercise in patients with mild AD. Exercise reduced neuropsychiatric symptoms in patients with mild AD, with possible additional benefits of preserved cognition in a subgroup of patients exercising with high attendance and intensity.</jats:p

    Approaching the ideal elastic limit of metallic glasses

    Get PDF
    The ideal elastic limit is the upper bound to the stress and elastic strain a material can withstand. This intrinsic property has been widely studied for crystalline metals, both theoretically and experimentally. For metallic glasses, however, the ideal elastic limit remains poorly characterized and understood. Here we show that the elastic strain limit and the corresponding strength of submicron-sized metallic glass specimens are about twice as high as the already impressive elastic limit observed in bulk metallic glass samples, in line with model predictions of the ideal elastic limit of metallic glasses. We achieve this by employing an in situ transmission electron microscope tensile deformation technique. Furthermore, we propose an alternative mechanism for the apparent 'work hardening' behaviour observed in the tensile stress–strain curves

    Nutrition and dementia care: developing an evidence-based model for nutritional care in nursing homes.

    Get PDF
    BACKGROUND: There is a growing volume of research to offer improvements in nutritional care for people with dementia living in nursing homes. Whilst a number of interventions have been identified to support food and drink intake, there has been no systematic research to understand the factors for improving nutritional care from the perspectives of all those delivering care in nursing homes. The aim of this study was to develop a research informed model for understanding the complex nutritional problems associated with eating and drinking for people with dementia. METHODS: We conducted nine focus groups and five semi-structured interviews with those involved or who have a level of responsibility for providing food and drink and nutritional care in nursing homes (nurses, care workers, catering assistants, dietitians, speech and language therapists) and family carers. The resulting conceptual model was developed by eliciting care-related processes, thus supporting credibility from the perspective of the end-users. RESULTS: The seven identified domain areas were person-centred nutritional care (the overarching theme); availability of food and drink; tools, resources and environment; relationship to others when eating and drinking; participation in activities; consistency of care and provision of information. CONCLUSIONS: This collaboratively developed, person-centred model can support the design of new education and training tools and be readily translated into existing programmes. Further research is needed to evaluate whether these evidence-informed approaches have been implemented successfully and adopted into practice and policy contexts and can demonstrate effectiveness for people living with dementia

    How to Build Collective Capabilities: The 3C-Model for Grassroots-led Development

    Get PDF
    Capabilities need to be built from the bottom-up. Social innovations at the grassroots seek to present new solutions to existing social problems. However, since the poor suffer from limitations on their individual capabilities and agency, they engage in acts of collective agency to generate new collective capabilities that each individual alone would not be able to achieve. The question is: how can these acts of collective agency be initiated, supported and sustained in practice? What roles can development actors (such as the state, donors and NGOs) play in supporting these acts of collective agency? Drawing on the literature on social innovation, the capability approach, participation and empowerment, the paper argues that three crucial C-processes are integral conditions for promoting successful, scalable and sustainable social innovations at the grassroots, namely: (1) Conscientization; (2) Conciliation and (3) Collaboration. By linking the individual, collective and institutional levels of analysis, the paper demonstrates the importance of individual behavioural changes, collective agency and local institutional reforms for the success, sustainability and scalability of social innovations at the grassroots. The paper acknowledges conflict, capture and cooptation as potential limitations and recognizes the role of contextual factors in initiating, implementing and sustaining social innovations at the grassroots

    Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity

    Get PDF
    Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale
    • …
    corecore