133 research outputs found

    Influence of exciton spin relaxation on the photoluminescence spectra of semimagnetic quantum dots

    Full text link
    We present a comprehensive experimental and theoretical studies of photoluminescence of single CdMnTe quantum dots with Mn content x ranging from 0.01 to 0.2. We distinguish three stages of the equilibration of the exciton-Mn ion spin system and show that the intermediate stage, in which the exciton spin is relaxed, while the total equilibrium is not attained, gives rise to a specific asymmetric shape of the photoluminescence spectrum. From an excellent agreement between the measured and calculated spectra we are able to evaluate the exciton localization volume, number of paramagnetic Mn ions, and their temperature for each particular dot. We discuss the values of these parameters and compare them with results of other experiments. Furthermore, we analyze the dependence of average Zeeman shifts and transition linewidths on the Mn content and point out specific processes, which control these values at particular Mn concentrations.Comment: submitted to Phys. Rev.

    Mathematical modeling of gonadotropin-releasing hormone signaling.

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control of reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively

    Mathematical modeling of gonadotropin-releasing hormone signaling

    Get PDF
    Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field

    Resonant excitonic emission of a single quantum dot in the Rabi regime

    Full text link
    We report on coherent resonant emission of the fundamental exciton state in a single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser excitation is realized by embedding the quantum dots in a waveguiding structure. As the pulse intensity is increased, Rabi oscillation is observed up to three periods. The Rabi regime is achieved owing to an enhanced light-matter coupling in the waveguide. This is due to a \emph{slow light effect} (c/vg3000c/v_{g}\simeq 3000), occuring when an intense resonant pulse propagates in a medium. The resonant control of the quantum dot fundamental transition opens new possibilities in quantum state manipulation and quantum optics experiments in condensed matter physics.Comment: Submitted to Phys. Rev. Let

    Single-cell microfluidics facilitates the rapid quantification of antibiotic accumulation in Gram-negative bacteria (article)

    Get PDF
    This is the final version. Available on open access from the Royal Society of Chemistry via the DOI in this recordData availability: All the data is available in the main text or in the supplementary materials.The code associated with this article is located in ORE at: http://hdl.handle.net/10871/121661The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for drug development, but this has proved elusive due to a dearth of suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence microscopy to rapidly quantify antibiotic accumulation in hundreds of individual Escherichia coli cells. By serially manipulating the microfluidic environment, we demonstrated that stationary phase Escherichia coli, traditionally more refractory to antibiotics than growing cells, display reduced accumulation of the antibiotic ofloxacin compared to actively growing cells. Our novel microfluidic method facilitates the quantitative comparison of the role of the microenvironment versus various membrane transport pathways in cellular drug accumulation. Unlike traditional techniques, our assay is rapid, studying accumulation as the cells are dosed with the drug. This platform provides a powerful new tool for studying antibiotic accumulation in bacteria, which will be critical for the rational development of the next generation of antibiotics.European CommissionBiotechnology and Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)University of Exeter School of BiosciencesEuropean Union Horizon 2020Medical Research Council (MRC)Royal SocietyWellcome TrustGW4 Initiator awar

    The fidelity of dynamic signaling by noisy biomolecular networks

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The First Passage Probability of Intracellular Particle Trafficking

    Full text link
    The first passage probability (FPP), of trafficked intracellular particles reaching a displacement L, in a given time t or inverse velocity S = t/L, can be calculated robustly from measured particle tracks, and gives a measure of particle movement in which different types of motion, e.g. diffusion, ballistic motion, and transient run-rest motion, can readily be distinguished in a single graph, and compared with mathematical models. The FPP is attractive in that it offers a means of reducing the data in the measured tracks, without making assumptions about the mechanism of motion: for example, it does not employ smoothing, segementation or arbitrary thresholds to discriminate between different types of motion in a particle track. Taking experimental data from tracked endocytic vesicles, and calculating the FPP, we see how three molecular treatments affect the trafficking. We show the FPP can quantify complicated movement which is neither completely random nor completely deterministic, making it highly applicable to trafficked particles in cell biology.Comment: Article: 13 pages, 8 figure

    Determining the relationship between hot flushes and LH pulses in menopausal women using mathematical modelling

    Get PDF
    Background Hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurones regulate LH pulsatility. It is widely accepted that the menopausal hot flush (HF) consistently synchronises with the LH pulse. This suggests that the hypothalamic KNDy neurones are implicated in generating LH pulsatility and HF. Using a modern immunoassay and mathematical modelling we investigated if the HF and LH pulse was consistently synchronised in menopausal women. Methods Eleven menopausal women (51-62yrs experiencing ≥7 HF/24hrs) attended for an 8 hour study where they self-reported HF and underwent peripheral blood sampling every 10 mins. LH pulsatility was determined using two mathematical models: blinded deconvolution analysis and Bayesian spectrum analysis. The probability that the LH pulse and HF event intervals matched was estimated using the interval distributions observed in our data. Results Ninety-six HF were self-reported, and 82 LH pulses were identified by blinded deconvolution analysis. Using both models, the probability that the two event intervals matched was low in the majority of participants (mean P=0.24 (P=1 reflects perfect association)). Interpretation Our data challenges the widely accepted dogma that HF consistently synchronise with an LH pulse, and so has clinically important therapeutic and mechanistic implications

    On the exciton binding energy in a quantum well

    Full text link
    We consider a model describing the one-dimensional confinement of an exciton in a symmetrical, rectangular quantum-well structure and derive upper and lower bounds for the binding energy EbE_b of the exciton. Based on these bounds, we study the dependence of EbE_b on the width of the confining potential with a higher accuracy than previous reports. For an infinitely deep potential the binding energy varies as expected from 1Ry1 Ry at large widths to 4Ry4 Ry at small widths. For a finite potential, but without consideration of a mass mismatch or a dielectric mismatch, we substantiate earlier results that the binding energy approaches the value 1Ry1 Ry for both small and large widths, having a characteristic peak for some intermediate size of the slab. Taking the mismatch into account, this result will in general no longer be true. For the specific case of a Ga1xAlxAs/GaAs/Ga1xAlxAsGa_{1-x}Al_{x}As/GaAs/Ga_{1-x}Al_{x}As quantum-well structure, however, and in contrast to previous findings, the peak structure is shown to survive.Comment: 32 pages, ReVTeX, including 9 figure
    corecore