Abstract

We consider a model describing the one-dimensional confinement of an exciton in a symmetrical, rectangular quantum-well structure and derive upper and lower bounds for the binding energy EbE_b of the exciton. Based on these bounds, we study the dependence of EbE_b on the width of the confining potential with a higher accuracy than previous reports. For an infinitely deep potential the binding energy varies as expected from 1Ry1 Ry at large widths to 4Ry4 Ry at small widths. For a finite potential, but without consideration of a mass mismatch or a dielectric mismatch, we substantiate earlier results that the binding energy approaches the value 1Ry1 Ry for both small and large widths, having a characteristic peak for some intermediate size of the slab. Taking the mismatch into account, this result will in general no longer be true. For the specific case of a Ga1xAlxAs/GaAs/Ga1xAlxAsGa_{1-x}Al_{x}As/GaAs/Ga_{1-x}Al_{x}As quantum-well structure, however, and in contrast to previous findings, the peak structure is shown to survive.Comment: 32 pages, ReVTeX, including 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions