821 research outputs found
Magnetic field generated resistivity maximum in graphite
In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved
Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations
We describe a molecular dynamics framework for the direct calculation of the
short-ranged structural forces underlying grain-boundary premelting and
grain-coalescence in solidification. The method is applied in a comparative
study of (i) a Sigma 9 120 degress twist and (ii) a Sigma 9 {411}
symmetric tilt boundary in a classical embedded-atom model of elemental Ni.
Although both boundaries feature highly disordered structures near the melting
point, the nature of the temperature dependence of the width of the disordered
regions in these boundaries is qualitatively different. The former boundary
displays behavior consistent with a logarithmically diverging premelted layer
thickness as the melting temperature is approached from below, while the latter
displays behavior featuring a finite grain-boundary width at the melting point.
It is demonstrated that both types of behavior can be quantitatively described
within a sharp-interface thermodynamic formalism involving a width-dependent
interfacial free energy, referred to as the disjoining potential. The
disjoining potential for boundary (i) is calculated to display a monotonic
exponential dependence on width, while that of boundary (ii) features a weak
attractive minimum. The results of this work are discussed in relation to
recent simulation and theoretical studies of the thermodynamic forces
underlying grain-boundary premelting.Comment: 24 pages, 8 figures, 1 tabl
Glassy Dynamics of Protein Methyl Groups Revealed by Deuteron NMR
We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K using deuteron solid-state NMR longitudinal relaxation measurements. The relaxation of the longitudinal magnetization is weakly nonexponential (glassy) at high temperatures and exhibits a stronger degree of nonexponentiality below about 175 K. In addition, the characteristic relaxation times deviate from the simple Arrhenius law. We interpret this behavior via the existence of distribution of activation energy barriers for the three-site methyl jumps, which originates from somewhat different methyl environments within the local energy landscape. The width of the distribution of the activation barriers for methyl jumps is rather significant, about 1.4 kJ/mol. Our experimental results and modeling allow for the description of the apparent change at about 175 K without invoking a specific transition temperature. For most residues in the core, the relaxation behavior at high temperatures points to the existence of conformational exchange between the substates of the landscape, and our model takes into account the kinetics of this process. The observed dynamics are the same for dry and hydrated protein. We also looked at the effect of F58L mutation inside the hydrophobic core on the dynamics of one of the residues and observed a significant increase in its conformational exchange rate constant at high temperatures
- …