424 research outputs found

    Modelling, analysis and control of partial nitritation in a SHARON reactor

    Get PDF

    Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor

    No full text
    This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed

    Mass and heat balances for biological nitrogen removal in an activated sludge process : to couple or not to couple?

    No full text
    Models adapt constantly, usually increasing the degree of detail describing physical phenomena. In water resource recovery facilities, models based on mass and/or heat balances have been used to describe and improve operation. While both mass and heat balances have proven their worth individually, the question arises to which extent their coupling, which entails increased model complexity, warrants the supposedly more precise simulation results. In order to answer this question, the need for and effects of coupling mass and heat balances in modelling studies were evaluated in this work for a biological nitrogen removal process treating highly concentrated wastewater. This evaluation consisted on assessing the effect of the coupling of mass and heat balances on the prediction of: (1) nitrogen removal efficiency; (2) temperature; (3) heat recovery. In general, mass balances are sufficient for evaluating nitrogen removal efficiency and effluent nitrogen concentrations. If one desires to evaluate the effect of temperature changes (e.g. daily, weekly, seasonally) on nitrogen removal efficiency, the use of temperature profiles as an input variable to a mass balance-based model is recommended over the coupling of mass and heat balances. In terms of temperature prediction, considering a constant biological heat generation term in the heat balance model provides sufficient information - i.e. without the coupling of mass and heat balances. Also, for evaluating the heat recovery potential of the system, constant biological heat generation values provide valuable information, at least under normal operating conditions, i.e. when the solids retention time is large enough to maintain nitrification

    Long‐term microbial community dynamics at two full‐scale biotrickling filters treating pig house exhaust air

    Get PDF
    In this study, the microbial community structure of two full-scale biotrickling filters treating exhaust air from a pig housing facility were evaluated using 16S metabarcoding. The effect of inoculation with activated sludge of a nearby domestic waste water treatment plant was investigated, which is a cheap procedure and easy to apply in practice. The study was performed at a three-stage and a two-stage full-scale biotrickling filter; of which, only the latter was inoculated. Both biotrickling filters evolved towards a rather similar community over time, which differed from the one in the activated sludge used for inoculation. However, the bacterial population at both biotrickling filters showed small differences on the family level. A large population of heterotrophic bacteria, including denitrifying bacteria, was present in both biotrickling filters. In the non-inoculated biotrickling filter, nitrite-oxidizing bacteria (NOB) could not be detected, which corresponded with the incomplete nitrification leading to high nitrite accumulation observed in this system. Inoculation with the wide spectrum inoculum activated sludge had in this study a positive effect on the biotrickling filter performance (higher ammonia removal and lower nitrous oxide production). It could thus be beneficial to inoculate biotrickling filters in order to enrich NOB at the start-up, making it easier to keep the free nitrous acid concentration low enough to not be inhibited by it
    • 

    corecore