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Abstract: Energy from biomass and waste is regarded as one of the most dominant future renewable 

energy sources to comply with a continuous power demand. In this context, anaerobic digestion (AD) 

is emerging in control engineering applications at a spectacular pace. The necessity for advanced 

control of AD systems is motivated by the challenges of the process in terms of instability problems, 

especially when applying high influent loads with variable composition. Intrinsic process advantages, 

such as efficiency in pollutant removal or energy production, can also be part of global process 

optimization through advanced control. The aim of this paper is to analyse the application of Extended 

Prediction Self-Adaptive Control (EPSAC), a model based predictive control strategy, to AD 

processes. The widely adopted Anaerobic Digestion Model No.1 (ADM1)  is used to simulate the AD 

process and to extract simplified models for prediction over a future time interval. The general control 

strategy objective is to manipulate the inputs within the operation limits such that maximum methane 

production is ensured.  
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INTRODUCTION  

 Anaerobic Digestion (AD) is a complex biological process carried out in the 

absence of oxygen that involves hundreds of different types of microbes, which break 

down biodegradable organic matter [1,2]. The process is characterized by the 

formation of biogas, which consists mainly in carbon dioxide (CO2) and methane 

(CH4). Anaerobic digestion processes have been applied for over hundred years, but 

there is still much room for advanced control methodologies to widen the competitive 

and complex scope of this process [3,4]. More specifically, one aims at improving the 

process performance in terms of the applied loading rate and the biogas quality and 

quantity, while ensuring process stability. Hitherto, only classic control strategies 

have been applied mainly based on heuristic rules (i.e. fuzzy) [5] and basic 

proportional-integral-derivative (PID) control [6]. These strategies worked well for 

single-input single-output cases, however AD processes can be viewed as 

multivariable systems, thus it might be useful to investigate more advanced control 

strategies. As such, model-based predictive control (MPC) strategies are good 

candidates to control the AD process, since they can inherently tackle multivariable 

dynamics, coupling effects, non-minimum phase behaviour, variable delays and 

multi-objective optimization [7-9]. A general objective of MPC schemes is to 

maintain the controlled variables close to their reference values while respecting 

process operating constraints. The MPC consists in a family of control methods that 

make use of an explicit process model when determining, by prediction over a future 

horizon, the control signal to be applied.  

 

BENCHMARK APPLICATION 

The EPSAC control strategy [9] is applied to the anaerobic digestion of sludge 

produced in a wastewater treatment plant (WWTP). The latter has been simulated 
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using the Benchmark Simulation Model no. 2 (BSM2) (Figure 1). The BSM2, 

describes the treatment of settled wastewater through a predenitrifying activated 

sludge system (i.e. 2 anoxic reactors followed by 3 aerobic reactors) followed by a 

secondary clarifier. Primary and thickened secondary sludge is treated through 

anaerobic digestion and subsequently dewatered. Plant performance evaluation is 

based on a one-year simulation, using influent data from [10]. Within BSM2, the 

anaerobic digestion process is described through the widespread and generally 

accepted Anaerobic Digestion Model No.1 (ADM1) [2]. The choice of the control 

structure for the anaerobic digestion process is important, since pairing correctly the 

inputs/outputs can have a significant effect on the performance that can be expected in 

closed loop operation. Moreover, operating constraints and the nonlinear behaviour of 

the process make the process control problem very attractive for performing 

multivariable algorithms such as MPC-EPSAC. An overview of inputs and outputs 

chosen for the multivariable control of the AD process is given in figure 2. Within the 

context of multivariable control, the standard input-output from figure 1 has been 

adapted to the one from figure 2 by adding buffers with manipulating valves. In this 

way we were able to manipulate the flow of the primary clarifier and the thickener 

flow.  

 
Figure 1. General overview of BSM2 wastewater treatment plant, including anaerobic digestion 

Jeppsson et al., (2006). 

 
Figure 2: Input-Output overview of the AD process 

 

EPSAC (Extended-Prediction Self-Adaptive Control) APPROACH TO MPC 
 

The MPC principle is based on the calculation of the predicted values of the 

process output over a time horizon called the prediction horizon by means of the 

available dynamic model. The forecast depends not only on past measured outputs 

and applied inputs, but also on the intended future control actions subject to the 

constraints and the desired reference trajectory. For the AD process the reference is 

given by the nominal operating point which gives the highest efficiency in terms of 

methane production, and the prediction model is identified from input-output data [9]. 

In the EPSAC strategy, a multistep prediction problem is solved using filtering 

techniques [8,9]. Therefore, within the generic model of a process, as shown in figure 

3, the process output is considered to be the effect of the process inputs (i.e. past real 
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inputs and outputs from the plant) on one hand and of the disturbances one the other 

hand. Notice that the term “disturbance” refers to everything which is not captured by 

the process model (i.e. modelling errors and noise).  

 
Figure 3. Schematic of the MPC strategy and of the principles of output prediction 

 

To better understand the MPC principle (figure 3 left) we will explain it by 

using figure 3 right. The process output        is predicted over a time horizon 

        at each „current‟ moment  . The predicted values are indicated by 

         and the value    is called the prediction horizon. The prediction will be 

done by means of a model of the process [9]. 

 In the MPC-EPSAC approach, the MIMO control objective can be either 

selfish or solidary. In the selfish approach, each output is optimized with respect to its 

direct input and taking into effect the interaction coming from the other inputs. In the 

solidary approach, each output is optimized with respect to all inputs and outputs, 

leading to a global optimization of the multivariable process. In our initial efforts to 

investigate the feasibility of the MIMO EPSAC control applied to AD, it turned out 

that the solidary control outperforms the selfish control (as expected) [8]. Another 

issue which can be tackled by EPSAC-MPC are the constraints. The control engineer 

has the choice of clipping (i.e. here the constraints are not taken into account during 

the optimization algorithm and if any manipulated variable is outside its limits, then 

saturation is applied), or constrained control (i.e. here the constraints are taken into 

account during the optimization algorithm). We showed that constrained control is 

obviously better in terms of minimizing variability on the controlled variable, as 

depicted in figure 4.  As the methane production cannot be measured directly, the 

effectively controlled variables are the biogas flow rate and the methane 

concentration, their product representing the methane mass flow rate. 

 
Figure 4: a detail of a simulation comparison between clipping and constrained control. This shows the 

obvious advantage of MPC over classical control which cannot handle constraints (e.g. PID). 

 

Further on, based on a dynamic data set over a 609 days period, the solidary 

control strategy was implemented taking into account constraints. The Total Methane 

Production (TMP) evaluated on the entire period of 609 days of simulations is 
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statistically significantly higher in solidary control than in selfish control, with a 

reduction in the variability of the controlled variable with about 40%. A detailed 

report on this makes the scope of another publication. 

 

CONCLUSIONS 

In this paper, the concept of multivariable predictive control was introduced 

for controlling the anaerobic digestion process and tested on BSM2 benckmark. The 

results of our research indicate an improvement of the closed loop performance in 

terms of variability and justify future steps to investigate the optimization of this 

complex process.  
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