27 research outputs found

    The short-time structural plasticity of dendritic spines is altered in a model of Rett syndrome

    Get PDF
    The maturation of excitatory transmission comes about through a developmental period in which dendritic spines are highly motile and their number, form and size are rapidly changing. Surprisingly, although these processes are crucial for the formation of cortical circuitry, little is known about possible alterations of these processes in brain disease. By means of acute in vivo 2-photon imaging we show that the dynamic properties of dendritic spines of layer V cortical neurons are deeply affected in a mouse model of Rett syndrome (RTT) at a time around P25 when the neuronal phenotype of the disease is still mild. Then, we show that 24h after a subcutaneous injection of IGF-1 spine dynamics is restored. Our study demonstrates that spine dynamics in RTT mice is severely impaired early during development and suggest that treatments for RTT should be started very early in order to reestablish a normal period of spine plasticity

    The 2018 Lake Louise Acute Mountain Sickness Score.

    Get PDF
    Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score

    Early abnormalities of post-sigh breathing in a mouse model of Rett syndrome.

    No full text
    International audienceRett syndrome is a neurodevelopmental disease accompanied by complex, disabling symptoms, including breathing symptoms. Because Rett syndrome is caused by mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2), Mecp2-deficient mice have been generated as experimental model. Males of Mecp2-deficient mice (Mecp2(-/y)) breathe normally at birth but show abnormal respiratory responses to hypoxia and hypercapnia from postnatal day 25 (P25). After P30, Mecp2(-/y) mice develop breathing symptoms reminiscent of Rett syndrome, aggravating until premature death at around P60. Using plethysmography, we analyzed the sighs and the post-sigh breathing pattern of unrestrained wild type male mice (WT) and Mecp2(-/y) mice from P15 to P60. Sighs are spontaneous large inspirations known to prevent lung atelectasis and to improve alveolar oxygenation. However, Mecp2(-/y) mice show early abnormalities of post-sigh breathing, with long-lasting post-sigh apnoeas, reduced tidal volume when eupnoea resumes and lack of post-sigh bradypnoea which develop from P15, aggravate with age and possibly contribute to breathing symptoms to come

    The kreisler mutation leads to the loss of intrinsically hypoxia-activated spots in the region of the retrotrapezoid nucleus/parafacial respiratory group

    No full text
    Acute hypoxia elicits a biphasic respiratory response characterized in the newborn by a transient hyperventilation followed by a severe decrease in respiratory drive known as hypoxic respiratory depression. Medullary O2 chemosensitivity is known to contribute to respiratory depression induced by hypoxia, although precise involvement of cell populations remains to be determined. Having a thorough knowledge of these populations is of relevance because perturbations in the respiratory response to hypoxia may participate in respiratory diseases in newborns. We aimed to analyze the hypoxic response of ponto-medullary cell populations of kreisler mutant mice. These mice have defects in a gene expressed in two rhombomeres encompassing a part of the medulla oblongata implicated in hypoxic respiratory depression. Central responses to hypoxia were analyzed in newborn mice by measuring respiratory rhythm in ex vivo caudal pons-medullary-spinal cord preparations and c-fos expression in wild-type and kreisler mutants. The homozygous kreisler mutation, which eliminates most of rhombomere 5 and mis-specifies rhombomere 6, abolished (1) an early decrease in respiratory frequency within 10 min of hypoxia and (2) an intrinsic hypoxic activation, which is characterized by an increase in c-fos expression in the region of the ventral medullary surface encompassing the retrotrapezoid nucleus/parafacial respiratory group expressing Phox2b. This increase in c-fos expression persisted in wild-type Phox2b-negative and Phox2b-positive cells after blockade of synaptic transmission and rhythmogenesis by a low [Ca2+]0. Another central response was retained in homozygous kreisler mutant mice; it was distinguished by (1) a delayed (10–30 min) depression of respiratory frequency and (2) a downregulation of c-fos expression in the ventrolateral reticular nucleus of the medulla, the nucleus of the solitary tract, and the area of the A5 region. Thus, two types of ponto-medullary cell groups, with distinct anatomical locations, participate in central hypoxic respiratory depression in newborns

    Acute Effects of Systemic Erythropoietin Injections on Carotid Body Chemosensory Activity Following Hypoxic and Hypercapnic Stimulation

    No full text
    © 2018, Springer International Publishing AG, part of Springer Nature. The carotid body (CB) chemoreceptors sense changes in arterial blood gases. Upon stimulation CB chemoreceptors cells release one or more transmitters to excite sensory nerve fibers of the carotid sinus nerve. While several neurotransmitters have been described to contribute to the CB chemosensory process less is known about modulatory molecules. Recent data suggest that erythropoietin (Epo) is involved in the control of ventilation, and it has been shown that Epo receptor is constitutively expressed in the CB chemoreceptors, suggesting a possible role for Epo in regulation of CB function. Therefore, in the present study we aimed to determine whether exogenous applications of Epo modulate the hypoxic and hypercapnic CB chemosensory responses. Carotid sinus nerve discharge was recorded in-situ from anesthetized adult male and female Sprague Dawley rats (350 g, n = 8) before and after systemic administration of Epo (2
    corecore