11 research outputs found

    E1 Protein of Bovine Papillomavirus Type 1 Interferes with E2 Protein-Mediated Tethering of the Viral DNA to Mitotic Chromosomes

    No full text
    Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal plasmids. It is therefore of vital importance for viruses to ensure nuclear retention and proper segregation of their viral DNA. The bovine papillomavirus (BPV) E2 enhancer protein plays a key role in these processes by tethering the viral DNA to the host cell chromosomes. Viral genomes that harbor phosphorylation mutations in the E2 gene are transformation defective, and for these mutant genomes, neither the viral DNA nor the E2 protein is detected on mitotic chromosomes, while other key functions of E2 in transcription and replication were wild type. Moreover, secondary mutations in both the E2 and E1 proteins lead to suppression of the phosphorylation mutant phenotype and resulted in reattachment of the viral DNA and the E2 protein onto mitotic chromosomes, suggesting that E1 also plays a role in viral genome partitioning. The E1 protein was cytologically always excluded from mitotic chromatin, either as a suppressor allele or as the wild type. In the absence of other viral proteins, an E2 protein containing alanine substitutions for phosphorylation substrates in the hinge region (E2-A4) was detected as wild-type on mitotic chromosomes. However, when wild-type E1 protein levels were increased in cells expressing either the A4 mutant E2 proteins or wild-type E2, the E2-A4 protein was much more sensitive to chromosomal dislocation than was the wild-type protein. In contrast, suppressor alleles of E1 were not capable of such abrogation of E2 binding (A4 or wild-type) to chromosomes. These results suggest that wild-type E1 can be a negative regulator of the chromosomal attachment of E2

    Aberrant DNA Polymerase α Is Excluded from the Nucleus by Defective Import and Degradation in the Nucleus*

    No full text
    DNA polymerase α is essential for the onset of eukaryotic DNA replication. Its correct folding and assembly within the nuclear replication pre-initiation complex is crucial for normal cell cycle progression and genome maintenance. Due to a single point mutation in the largest DNA polymerase α subunit, p180, the temperature-sensitive mouse cell line tsFT20 exhibits heat-labile DNA polymerase α activity and S phase arrest at restrictive temperature. In this study, we show that an aberrant form of endogenous p180 in tsFT20 cells (p180tsFT20) is strictly localized in the cytoplasm while its wild-type counterpart enters the nucleus. Time-lapse fluorescence microscopy with enhanced green fluorescent protein-tagged or photoactivatable green fluorescent protein-tagged p180tsFT20 variants and inhibitor analysis revealed that the exclusion of aberrant p180tsFT20 from the nucleus is due to two distinct mechanisms: first, the inability of newly synthesized (cytoplasmic) p180tsFT20 to enter the nucleus and second, proteasome-dependent degradation of nuclear-localized protein. The nuclear import defect seems to result from an impaired association of aberrant de novo synthesized p180tsFT20 with the second subunit of DNA polymerase α, p68. In accordance, we show that RNA interference of p68 results in a decrease of the overall p180 protein level and in a specific increase of cytoplasmic localized p180 in NIH3T3 cells. Taken together, our data suggest two mechanisms that prevent the nuclear expression of aberrant DNA polymerase α
    corecore