17 research outputs found

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Inhibitory deficits in the dorsolateral prefrontal cortex in psychopathic offenders

    No full text
    Item does not contain fulltextOften typified as cunning social predators, psychopathic offenders show a persistent pattern of impulsive and reckless behavior, the pathophysiology of which has been related to dysfunction in the dorsolateral prefrontal cortex (DLPFC). That is, the DLPFC is important for the regulatory control of impulses and emotion as well as working memory and psychopathic offenders show impairments in all three dimensions. In the present study, we used combined transcranial magnetic stimulation and electroencephalography to compare the physiology of the DLPFC in 13 psychopathic offenders and 15 healthy subjects vis a vis excitability and inhibition. In addition, working memory performance was measured through the letter number sequencing test. Results showed that compared to healthy subjects, psychopathic offenders had inhibition not excitability deficits in the DLPFC that was accompanied by deficits in working memory performance. In healthy controls and psychopathic offenders working memory performance correlated with the extent of inhibition over the DLPFC. Taken together, these findings suggest that psychopathic offenders suffer from dysfunctional inhibitory neurotransmission in the DLPFC and impaired working memory which may account for the behavioral impairments associated with this disord

    Summaries from the XVIII World Congress of Psychiatric Genetics, Athens, Greece, 3-7 October 2010

    No full text
    Item does not contain fulltextThe XVIIIth World Congress of Psychiatric Genetics, sponsored by The International Society of Psychiatric Genetics took place in Athens, Greece on October 3-7, 2010. Approximately 950 participants gathered to discuss the latest findings in this rapidly advancing field. The following report was written by junior travel awardees, as well as others who were volunteers from student meeting attendees. Each was assigned sessions as rapporteurs. This report represents some of the areas covered in oral presentation during the conference, and reports on some of the notable major new findings described at this 2010 World Congress of Psychiatric Genetics.37 p

    Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets.

    No full text
    INTRODUCTION: Poor quality T1-weighted brain scans systematically affect the calculation of brain measures. Removing the influence of such scans requires identifying and excluding scans with noise and artefacts through a quality control (QC) procedure. While QC is critical for brain imaging analyses, it is not yet clear whether different QC approaches lead to the exclusion of the same participants. Further, the removal of poor-quality scans may unintentionally introduce a sampling bias by excluding the subset of participants who are younger and/or feature greater clinical impairment. This study had two aims: (1) examine whether different QC approaches applied to T1-weighted scans would exclude the same participants, and (2) examine how exclusion of poor-quality scans impacts specific demographic, clinical and brain measure characteristics between excluded and included participants in three large pediatric neuroimaging samples. METHODS: We used T1-weighted, resting-state fMRI, demographic and clinical data from the Province of Ontario Neurodevelopmental Disorders network (Aim 1: n = 553, Aim 2: n = 465), the Healthy Brain Network (Aim 1: n = 1051, Aim 2: n = 558), and the Philadelphia Neurodevelopmental Cohort (Aim 1: n = 1087; Aim 2: n = 619). Four different QC approaches were applied to T1-weighted MRI (visual QC, metric QC, automated QC, fMRI-derived QC). We used tetrachoric correlation and inter-rater reliability analyses to examine whether different QC approaches excluded the same participants. We examined differences in age, mental health symptoms, everyday/adaptive functioning, IQ and structural MRI-derived brain indices between participants that were included versus excluded following each QC approach. RESULTS: Dataset-specific findings revealed mixed results with respect to overlap of QC exclusion. However, in POND and HBN, we found a moderate level of overlap between visual and automated QC approaches (r(tet)=0.52-0.59). Implementation of QC excluded younger participants, and tended to exclude those with lower IQ, and lower everyday/adaptive functioning scores across several approaches in a dataset-specific manner. Across nearly all datasets and QC approaches examined, excluded participants had lower estimates of cortical thickness and subcortical volume, but this effect did not differ by QC approach. CONCLUSION: The results of this study provide insight into the influence of QC decisions on structural pediatric imaging analyses. While different QC approaches exclude different subsets of participants, the variation of influence of different QC approaches on clinical and brain metrics is minimal in large datasets. Overall, implementation of QC tends to exclude participants who are younger, and those who have more cognitive and functional impairment. Given that automated QC is standardized and can reduce between-study differences, the results of this study support the potential to use automated QC for large pediatric neuroimaging datasets

    Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    These authors contributed equally: Gail Davies, Max Lam. These authors jointly supervised this work: Todd Lencz, Ian J. Deary

    Multi-Trait analysis of gwas and biological insights into cognition: A response to hill (2018)

    No full text
    Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597-2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229-237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'. © The Author(s) 2018Â

    Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

    No full text
    Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability (“g”), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum). Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth. Lam et al. conduct a large-scale genome-wide association study of cognitive ability, identifying 70 associated loci. Results provide biological insights into the molecular basis of individual differences in cognitive ability, as well as their relationship to psychiatric and other health-relevant phenotypes. © 2017 The Author(s

    Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways

    No full text
    Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected (“concordant”) direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive (“discordant”) relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10−8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms—early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways—that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness. © 201

    Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics

    No full text
    Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing. © 2021, The Author(s)
    corecore