7 research outputs found

    Toxic effects of gunshot fumes from different ammunitions for small arms on lung cells exposed at the air liquid interface

    Get PDF
    Concerns have been raised as to whether gunshot fumes induce prolonged reduced lung capacity or even cancer due to inhalation. Gunshot fumes from three different types of ammunition calibre 5.56 mm × 45 NATO were investigated. SS109 has a soft lead (Pb) core, while NM255 and NM229 have a harder steel core. Emissions from ammunitions were characterized with respect to particle number- and mass-size, and mass distribution, heavy metal content, and different gases. Lung epithelial cells were exposed to the fumes at the air liquid interface to elucidate cytotoxicity and genotoxicity. Irrespectively of ammunition type, the largest mass fraction of generated particulate matter (PM) had a size between 1 and 3 μm. The highest number of particles generated was in the size range of 30 nm. Fumes from NM255 and NM229 induced cytotoxic effects of which the emission from NM229 induced the highest effect. Fumes from NM229 induced a dose-related increase in DNA-damage. Significant effects were only achieved at the highest exposure level, which led to approximately 40% reduced cell viability after 24 h. The effect probably relates to the mass of emitted particles where the size may be of importance, in addition to emission of Cu and Zn. A complex mixture of chemical substances and PM may increase the toxicity of the fumes and should encourage measures to reduce exposure.publishedVersio

    Toxic effects of gunshot fumes from different ammunitions for small arms on lung cells exposed at the air liquid interface

    No full text
    Concerns have been raised as to whether gunshot fumes induce prolonged reduced lung capacity or even cancer due to inhalation. Gunshot fumes from three different types of ammunition calibre 5.56 mm × 45 NATO were investigated. SS109 has a soft lead (Pb) core, while NM255 and NM229 have a harder steel core. Emissions from ammunitions were characterized with respect to particle number- and mass-size, and mass distribution, heavy metal content, and different gases. Lung epithelial cells were exposed to the fumes at the air liquid interface to elucidate cytotoxicity and genotoxicity. Irrespectively of ammunition type, the largest mass fraction of generated particulate matter (PM) had a size between 1 and 3 μm. The highest number of particles generated was in the size range of 30 nm. Fumes from NM255 and NM229 induced cytotoxic effects of which the emission from NM229 induced the highest effect. Fumes from NM229 induced a dose-related increase in DNA-damage. Significant effects were only achieved at the highest exposure level, which led to approximately 40% reduced cell viability after 24 h. The effect probably relates to the mass of emitted particles where the size may be of importance, in addition to emission of Cu and Zn. A complex mixture of chemical substances and PM may increase the toxicity of the fumes and should encourage measures to reduce exposure

    Glioblastoma microenvironment contains multiple hormonal and non-hormonal growth-stimulating factors

    No full text
    Background The growth of malignant tumors is influenced by their microenvironment. Glioblastoma, an aggressive primary brain tumor, may have cysts containing fluid that represents the tumor microenvironment. The aim of this study was to investigate whether the cyst fluid of cystic glioblastomas contains growth-stimulating factors. Identification of such growth factors may pave the way for the development of targeted anti-glioblastoma therapies. Methods We performed hormone analysis of cyst fluid from 25 cystic glioblastomas and proteomics analysis of cyst fluid from another 12 cystic glioblastomas. Results Glioblastoma cyst fluid contained hormones within wide concentration ranges: Insulin-like growth factor 1 (0–13.7 nmol/L), insulin (1.4–133 pmol/L), erythropoietin (4.7–402 IU/L), growth hormone (0–0.93 µg/L), testosterone (0.2–10.1 nmol/L), estradiol (0–1.0 nmol/L), triiodothyronine (1.0–11.5). Tumor volume correlated with cyst fluid concentrations of growth hormone and testosterone. Survival correlated inversely with cyst fluid concentration of erythropoietin. Several hormones were present at concentrations that have been shown to stimulate glioblastoma growth in vitro. Concentrations of erythropoietin and estradiol (in men) were higher in cyst fluid than in serum, suggesting formation by tumor or brain tissue. Quantitatively, glioblastoma cyst fluid was dominated by serum proteins, illustrating blood–brain barrier leakage. Proteomics identified several proteins that stimulate tumor cell proliferation and invasiveness, others that inhibit apoptosis or mediate adaption to hypoxia and some that induce neovascularization or blood–brain barrier leakage. Conclusion The microenvironment of glioblastomas is rich in growth-stimulating factors that may originate from the circulation, the tumor, or the brain. The wide variation in cyst fluid hormone concentrations may differentially influence tumor growth

    Abstracts from The Cold Weather Operations Conference 2021

    Get PDF
    A common effort for both military and civil healthcare is to achieve knowledge-based health care in cold weather injuries and fatal accidents in harsh arctic environment. The Cold Weather Operations Conference in November 2021, having more than 300 participants from 20 countries, was addressing the prevention and treatment of injuries and trauma care in cold weather conditions and the challenges for military prehospital casualty care. The intention of the programme was to stimulate further research and systematic knowledge-based clinical work. The abstracts from the conference present cold weather research and clinical experience relevant for readers of the International Journal of Circumpolar Health

    Abstracts from The Cold Weather Operations Conference 2021

    No full text
    A common effort for both military and civil healthcare is to achieve knowledge-based health care in cold weather injuries and fatal accidents in harsh arctic environment. The Cold Weather Operations Conference in November 2021, having more than 300 participants from 20 countries, was addressing the prevention and treatment of injuries and trauma care in cold weather conditions and the challenges for military prehospital casualty care. The intention of the programme was to stimulate further research and systematic knowledge-based clinical work. The abstracts from the conference present cold weather research and clinical experience relevant for readers of the International Journal of Circumpolar Health
    corecore