6,083 research outputs found

    Nuclear suppression of heavy quark production at forward rapidities in relativistic heavy ion collisions

    Full text link
    We calculate nuclear suppression RAAR_{AA} of heavy quarks produced from the initial fusion of partons in nucleus-nucleus collisions at RHIC and LHC energies. We take the shadowing as well as the energy loss suffered by them while passing through Quark Gluon Plasma into account. We obtain results for charm and bottom quarks at several rapidities using different mechanisms for energy loss, to see if we can distinguish between them.Comment: 21 pages including 13 figures. To appear in J. Phys.

    On QCD analysis of stucture function F2γF_2^{\gamma} in alternative approach

    Full text link
    The alternative approach to QCD analysis of the photon structure function F2γF_2^{\gamma} is presented. It differs from the conventional one by the presence of the terms which in conventional approach appear in higher orders. We show that this difference concerns also the photonic parton distribution functions. In the alternative approach, the complete LO analysis of F2γF_2^{\gamma} can be performed as all required quantities are known. At the NLO, however, one of the coefficient function is so far not available and thus only the photonic parton distribution function can be computed and compared to those of standard approach. We discuss the numerical difference of these approaches at the LO and the NLO approximation and show that in case of F2γF_2^{\gamma} this difference is non-negligible and may play an important role in the analysis on photon data of the future experiments.Comment: 25 page

    Quark exchange model for charmonium dissociation in hot hadronic matter

    Full text link
    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where QQ and qq refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+πD+DˉJ/\psi + \pi \to D+ \bar D is calculated using a potential model, which is fitted to the meson mass spectrum. The temperature dependence of the relaxation time for the \J/Psi distribution in a homogeneous thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure

    On the Solutions of the Lorentz-Dirac Equation

    Full text link
    We discuss the unstable character of the solutions of the Lorentz-Dirac equation and stress the need of methods like order reduction to derive a physically acceptable equation of motion. The discussion is illustrated with the paradigmatic example of the non-relativistic harmonic oscillator with radiation reaction. We also illustrate removal of the noncasual pre-acceleration with the introduction of a small correction in the Lorentz-Dirac equation.Comment: 4 eps figs. to be published in GR

    A model of superoutbursts in binaries of SU UMa type

    Full text link
    A new mechanism explaining superoutbursts in binaries of SU UMa type is proposed. In the framework of this mechanism the accretion rate increase leading to the superoutburst is associated with formation of a spiral wave of a new "precessional" type in inner gasdynamically unperturbed parts of the accretion disc. The possibility of existence of this type of waves was suggested in our previous work (astro-ph/0403053). The features of the "precessional" spiral wave allow explaining both the energy release during the outburst and all its observational manifestations. The distinctive characteristic of a superoutburst in a SU UMa type star is the appearance of the superhump on the light curve. The proposed model reproduces well the formation of the superhump as well as its observational features, such as the period that is 3-7% longer than the orbital one and the detectability of superhumps regardless of the binary inclination.Comment: LaTeX, 20 pages, 4 figures, to be published in Astron. Z

    C, N, O Abundances in the Most Metal-Poor Damped Lyman alpha Systems

    Full text link
    This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant proto-galaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars' interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.Comment: 17 pages, 9 Figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Charmonium suppression in p-A collisions at RHIC

    Full text link
    We discuss charmonium production in proton-nucleus collisions at RHIC energies under the assumption of xF and x2 scaling. We find that all the ambiguities due to energy loss are gone at this energy and therefore data will reveal the scaling law, if any. These p-A data will also be crucial to interpret nucleus-nucleus data with respect to a possible formation of a quark gluon plasma because the extrapolations for charmonium production from the present p-A data to RHIC energies, based on the two scaling laws, differ by a factor of four.Comment: 6 pages, 3 figures. New section on shadowing and energy loss, References adde

    Charmonium suppression in p-A collisions

    Get PDF
    The new high precision data on charmonium production in proton-nucleus collisions by the E866/NuSea collaboration at Fermilab allow - together with older data at lower energies - to fix a unique set of parameters for the standard production and absorption scenario of charmonium in a proton-nucleus reaction. In this scenario the c-cbar pair is formed in an octet state, emits a gluon and continues its radial expansion in a singlet state until it has reached the charmonium radius. In all three phases it can interact with the nuclear environment. We find that the lifetime of the octet state is much shorter than acceptable on physical grounds. This challenges the physical reality of the first phase in the standard scenario.Comment: 8 pages, 10 figure
    corecore