10 research outputs found

    Experimental investigation of single carbon compounds under hydrothermal conditions

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 446-460, doi:10.1016/j.gca.2005.09.002.The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300°C and 350 bar in flexible cell hydrothermal apparatus, and the abundance of carbon compounds were monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable equilibrium. Reaction of CO2 to form CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 x 106 s-1 and an activation energy of 102 KJ mol-1 were retrieved from the experimental results for the oxidation of CO to CO2. Reactions rates amongst single carbon compounds during the experiments suggests SCO2 (CO2 + HCO3- + CO3=), CO, SHCOOH (HCOOH + HCOO-), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions, which in turn may influence the likelihood for abiotic synthesis via Fischer-Tropsch-type processes, is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.This study was supported by the National Science Foundation grant #OCE-0136954, the Office of Basic Energy Sciences, U.S. Department of Energy grant #DEFG0297ER14746, and by NASA Exobiology grant #NAG5-7696 and Origins grant #NNG04GG23G

    The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    Get PDF
    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17T, isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.Research was funded by grants of the Division of Chemical Sciences (CW-TOP 700.55.343) and Earth and Life Sciences (ALW 819.02.014) of The Netherlands Organisation for Scientific Research (NWO), the European Research Council (ERC grant 323009), and the Gravitation grant (024.002.002) of the Netherlands Ministry of Education, Culture and Scienceinfo:eu-repo/semantics/publishedVersio

    Bioenergetic Constraints on Microbial Hydrogen Utilization in Precambrian Deep Crustal Fracture Fluids

    No full text
    Precambrian Shield rocks host the oldest fracture fluids on Earth, with residence times up to a billion years or more. Water–rock reactions in these fracture systems over geological time have produced highly saline fluids, which can contain millimolar concentrations of H2. Mixing of these ancient Precambrian fluids with meteoric or palaeo-meteoric water can occur through tectonic fracturing, providing microbial inocula and redox couples to fuel blooms of subsurface growth. Here, we present geochemical and microbiological data from a series of borehole fluids of varying ionic strength (0.6–6.4 M) from the Thompson Mine (Manitoba) within the Canadian Precambrian Shield. Thermodynamic calculations demonstrate sufficient energy for H2-based catabolic reactions across the entire range of ionic strengths during mixing of high ionic strength fracture fluids with meteoric water, although microbial H2 consumption and cultivable H2-utilizing microbes were only detected in fluids of ≤1.9 M ionic strength. This pattern of microbial H2 utilization can be explained by the higher potential bioenergetic cost of organic osmolyte synthesis at increasing ionic strengths. We propose that further research into the bioenergetics of osmolyte regulation in halophiles is warranted to better constrain the habitability zones of hydrogenotrophic ecosystems in both terrestrial subsurface, including potential future radioactive waste disposal sites, and other planetary body crustal environments, including Mars

    Seaweed Invasion! Temporal Changes in Beach Conditions Lead to Increasing Cenote Usage and Contamination in the Riviera Maya

    No full text
    Since 2011, tourism to Mexico’s Yucatán Peninsula has been heavily impacted by large masses of sargassum seaweed washing up on the beaches, with the largest seaweed event occurring in 2019. Seaweed deters beach tourism, potentially shifting tourism inland towards other activities such as swimming in cenotes (sinkholes). Our mixed methods study combined data from surveys of visitors to the region, interviews with tourists and tour operators, thematic analysis of newspaper articles, laws and policies and analysis of water samples from a cenote to understand the environmental impact on cenotes of this shifting tourism industry. We identified intentional efforts by the tourism industry to encourage cenote tourism in response to the seaweed problem, and our survey and interview data confirmed that tourists are choosing to visit cenotes in lieu of beaches. Water samples from one tourist cenote in 2019 indicated increased pollution relative to previous years. Current regulations and management of tourist cenotes are weak, creating the potential for significant long term harm to the environment and to the water sovereignty of surrounding communities. Regulation of cenotes should be strengthened to protect these fragile karst ecosystems and to give local and indigenous residents a formal voice in the management process

    Seaweed invasion! Temporal changes in beach conditions lead to increasing cenote usage and contamination in the Riviera Maya

    No full text
    Since 2011, tourism to Mexico\u27s Yucatan Peninsula has been heavily impacted by large masses of sargassum seaweed washing up on the beaches, with the largest seaweed event occurring in 2019. Seaweed deters beach tourism, potentially shifting tourism inland towards other activities such as swimming in cenotes (sinkholes). Our mixed methods study combined data from surveys of visitors to the region, interviews with tourists and tour operators, thematic analysis of newspaper articles, laws and policies and analysis of water samples from a cenote to understand the environmental impact on cenotes of this shifting tourism industry. We identified intentional efforts by the tourism industry to encourage cenote tourism in response to the seaweed problem, and our survey and interview data confirmed that tourists are choosing to visit cenotes in lieu of beaches. Water samples from one tourist cenote in 2019 indicated increased pollution relative to previous years. Current regulations and management of tourist cenotes are weak, creating the potential for significant long term harm to the environment and to the water sovereignty of surrounding communities. Regulation of cenotes should be strengthened to protect these fragile karst ecosystems and to give local and indigenous residents a formal voice in the management process

    Seaweed invasion! Temporal changes in beach conditions lead to increasing cenote usage and contamination in the Riviera Maya

    No full text
    Since 2011, tourism to Mexico\u27s Yucatan Peninsula has been heavily impacted by large masses of sargassum seaweed washing up on the beaches, with the largest seaweed event occurring in 2019. Seaweed deters beach tourism, potentially shifting tourism inland towards other activities such as swimming in cenotes (sinkholes). Our mixed methods study combined data from surveys of visitors to the region, interviews with tourists and tour operators, thematic analysis of newspaper articles, laws and policies and analysis of water samples from a cenote to understand the environmental impact on cenotes of this shifting tourism industry. We identified intentional efforts by the tourism industry to encourage cenote tourism in response to the seaweed problem, and our survey and interview data confirmed that tourists are choosing to visit cenotes in lieu of beaches. Water samples from one tourist cenote in 2019 indicated increased pollution relative to previous years. Current regulations and management of tourist cenotes are weak, creating the potential for significant long term harm to the environment and to the water sovereignty of surrounding communities. Regulation of cenotes should be strengthened to protect these fragile karst ecosystems and to give local and indigenous residents a formal voice in the management process
    corecore