290 research outputs found

    Appropriate use criteria for transesophageal echocardiography in Greece: A single center experience

    Get PDF
    Introduction The American College of Cardiology Foundation (ACCF) along with the American Society of Echocardiography (ASE) have enabled an accurate and clinically oriented evaluation of echocardiography indications by introducing Appropriate Use Criteria (AUC). Aim This study was designed to evaluate the degree of implementation of AUC for transesophageal echocardiography (TEE) during daily clinical practice in a tertiary university hospital in Greece during the era of economic recession. Materials and Methods From November 2014 to May 2014, we prospectively enrolled 300 patients who were examined in the Echocardiography Laboratory of the First University Cardiology. We recorded the participants' demographic and clinical characteristics using questionnaires and followed a scoring process according to ACCF guidelines to classify patients into an appropriate, inappropriate or uncertain category. The primary endpoint was to assess the association between the class of appropriateness and abnormal TEE results. Results In 89.4% of patients labelled appropriate, TEE was abnormal and significantly higher compared to patients of uncertain eligibility (50%) and to patients for whom TEE was considered to be inappropriate (35%) (p < 0.001). Subgroup analysis revealed a positive association between AUC and an increased possibility for abnormal TEE in female subjects (p = 0.001) as well as in patients who were younger than 50 years old (p < 0.001). A significant association was finally established between AUC and abnormal findings in TEE in patients with no risk factors (p = 0.028) and in patients with more than 3 risk factors (p = 0.013). Conclusion TEE constitutes a medical practice with an optimal cost/effectiveness ratio and should be further encouraged in our country in accordance with the austerity policy as long as the AUC are generally applied

    The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives

    Get PDF
    Diabetes is a complex metabolic disorder affecting the glucose status of the human body. Chronic hyperglycaemia related to diabetes is associated with end organ failure. The clinical relationship between diabetes and atherosclerotic cardiovascular disease is well established. This makes therapeutic approaches that simultaneously target diabetes and atherosclerotic disease an attractive area for research. The majority of people with diabetes fall into two broad pathogenetic categories, type 1 or type 2 diabetes. The role of obesity, adipose tissue, gut microbiota and pancreatic beta cell function in diabetes are under intensive scrutiny with several clinical trials to have been completed while more are in development. The emerging role of inflammation in both type 1 and type 2 diabetes (T1D and T1D) pathophysiology and associated metabolic disorders, has generated increasing interest in targeting inflammation to improve prevention and control of the disease. After an extensive review of the possible mechanisms that drive the metabolic pattern in T1D and T2D and the inflammatory pathways that are involved, it becomes ever clearer that future research should focus on a model of combined suppression for various inflammatory response pathways

    Tildacerfont in Adults With Classic Congenital Adrenal Hyperplasia: Results from Two Phase 2 Studies

    Get PDF
    Context: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (21OHD) is typically treated with lifelong supraphysiologic doses of glucocorticoids (GCs). Tildacerfont, a corticotropin-releasing factor type-1 receptor antagonist, may reduce excess androgen production, allowing for GC dose reduction. Objective: Assess tildacerfont safety and efficacy. Design and setting: Two Phase 2 open-label studies. Patients: Adults with 21OHD. Intervention: Oral tildacerfont 200 to 1000 mg once daily (QD) (n = 10) or 100 to 200 mg twice daily (n = 9 and 7) for 2 weeks (Study 1), and 400 mg QD (n = 11) for 12 weeks (Study 2). Main outcome measure: Efficacy was evaluated by changes from baseline at 8 am in adrenocorticotropic hormone (ACTH), 17-hydroxyprogesterone (17-OHP), and androstenedione (A4) according to baseline A4 ≤ 2× upper limit of normal (ULN) or A4 > 2× ULN. Safety was evaluated using adverse events (AEs) and laboratory assessments. Results: In Study 1, evaluable participants with baseline A4 > 2× ULN (n = 11; 19-67 years, 55% female) had reductions from baseline in ACTH (-59.4% to -28.4%), 17-OHP (-38.3% to 0.3%), and A4 (-24.2% to -18.1%), with no clear dose response. In Study 2, participants with baseline A4 > 2× ULN (n = 5; 26-63 years, 40% female) had ~80% maximum mean reductions in biomarker levels. ACTH and A4 were normalized for 60% and 40%, respectively. In both studies, participants with baseline A4 ≤ 2× ULN maintained biomarker levels. AEs (in 53.6% of patients overall) included headache (7.1%) and upper respiratory tract infection (7.1%). Conclusions: For patients with 21OHD, up to 12 weeks of oral tildacerfont reduced or maintained key hormone biomarkers toward normal

    Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease

    Get PDF
    BACKGROUND: The molecular chaperone heat shock protein-90 (Hsp90) is a promising cancer drug target, but current Hsp90-based therapy has so far shown limited activity in the clinic. METHODS: We tested the efficacy of a novel mitochondrial-targeted, small-molecule Hsp90 inhibitor, Gamitrinib (GA mitochondrial matrix inhibitor), in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. The TRAMP mice receiving 3-week or 5-week systemic treatment with Gamitrinib were evaluated for localised or metastatic prostate cancer, prostatic intraepithelial neoplasia (PIN) or localised inflammation using magnetic resonance imaging, histology and immunohistochemistry. Treatment safety was assessed histologically in organs collected at the end of treatment. The effect of Gamitrinib on mitochondrial dysfunction was studied in RM1 cells isolated from TRAMP tumours. RESULTS: Systemic administration of Gamitrinib to TRAMP mice inhibited the formation of localised prostate tumours of neuroendocrine or adenocarcinoma origin, as well as metastatic prostate cancer to abdominal lymph nodes and liver. The Gamitrinib treatment had no effect on PIN or prostatic inflammation, and caused no significant animal weight loss or organ toxicity. Mechanistically, Gamitrinib triggered acute mitochondrial dysfunction in RM1 cells, with loss of organelle inner membrane potential and release of cytochrome-c in the cytosol. CONCLUSIONS: The Gamitrinib has pre-clinical activity and favourable tolerability in a genetic model of localised and metastatic prostate cancer in immunocompetent mice. Selective targeting of mitochondrial Hsp90 could provide novel molecular therapy for patients with advanced prostate cancer

    Crosstalk between JNK and SUMO Signaling Pathways: deSUMOylation Is Protective against H2O2-Induced Cell Injury

    Get PDF
    Background: Oxidative stress is a key feature in the pathogenesis of several neurological disorders. Following oxidative stress stimuli a wide range of pathways are activated and contribute to cellular death. The mechanism that couples c-Jun N-terminal kinase (JNK) signaling, a key pathway in stress conditions, to the small ubiquitin-related modifier (SUMO), an emerging protein in the field, is largely unknown. Methodology/Principal Findings: With this study we investigated if SUMOylation participates in the regulation of JNK activation as well as cellular death in a model of H 2O 2 induced-oxidative stress. Our data show that H 2O 2 modulates JNK activation and induces cellular death in neuroblastoma SH-SY5Y cells. Inhibition of JNK’s action with the D-JNKI1 peptide rescued cells from death. Following H2O2, SUMO-1 over-expression increased phosphorylation of JNK and exacerbated cell death, although only in conditions of mild oxidative stress. Furthermore inhibition of SUMOylation, following transfection with SENP1, interfered with JNK activation and rescued cells from H 2O 2 induced death. Importantly, in our model, direct interaction between these proteins can occur. Conclusions/Significance: Taken together our results show that SUMOylation may significantly contribute to modulation o

    A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of <it>KRAS </it>are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells.</p> <p>Methods</p> <p>DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for <it>KRAS </it>amplification by quantitative PCR, and investigated <it>KRAS </it>amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of <it>KRAS </it>knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively.</p> <p>Results</p> <p>DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the <it>KRAS </it>gene locus. Amplification of the <it>KRAS </it>locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). <it>KRAS </it>mutations were identified in two of the three cell lines in which <it>KRAS </it>was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased <it>KRAS </it>copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type <it>KRAS</it>, but not in cells with amplified mutant <it>KRAS</it>. Knock-down of <it>KRAS </it>in gastric cancer cells that carried amplified wild-type <it>KRAS </it>resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity.</p> <p>Conclusion</p> <p>Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified <it>KRAS </it>as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of <it>KRAS </it>amplification and overexpression.</p

    Role of Chaperone Mediated Autophagy (CMA) in the Degradation of Misfolded N-CoR Protein in Non-Small Cell Lung Cancer (NSCLC) Cells

    Get PDF
    Nuclear receptor co-repressor (N-CoR) plays important role in transcriptional control mediated by several tumor suppressor proteins. Recently, we reported a role of misfolded-conformation dependent loss (MCDL) of N-CoR in the activation of oncogenic survival pathway in acute promyelocytic leukemia (APL). Since N-CoR plays important role in cellular homeostasis in various tissues, therefore, we hypothesized that an APL like MCDL of N-CoR might also be involved in other malignancy. Indeed, our initial screening of N-CoR status in various leukemia and solid tumor cells revealed an APL like MCDL of N-CoR in primary and secondary tumor cells derived from non-small cell lung cancer (NSCLC). The NSCLC cell specific N-CoR loss could be blocked by Kaletra, a clinical grade protease inhibitor and by genistein, an inhibitor of N-CoR misfolding previously characterized by us. The misfolded N-CoR presented in NSCLC cells was linked to the amplification of ER stress and was subjected to degradation by NSCLC cell specific aberrant protease activity. In NSCLC cells, misfolded N-CoR was found to be associated with Hsc70, a molecular chaperone involved in chaperone mediated autophagy (CMA). Genetic and chemical inhibition of Lamp2A, a rate limiting factor of CMA, significantly blocked the loss of N-CoR in NSCLC cells, suggesting a crucial role of CMA in N-CoR degradation. These findings identify an important role of CMA-induced degradation of misfolded N-CoR in the neutralization of ER stress and suggest a possible role of misfolded N-CoR protein in the activation of oncogenic survival pathway in NSCLC cells
    corecore