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Diabetes is a multifaceted metabolic disorder affecting the 

glucose status of the human body. Impaired glucose tolerance and 

hyperglycaemia are the main clinical and diagnostic features and the 

result of an absolute or relative insulin deficiency or resistance to its 

action. Chronic hyperglycaemia associated with diabetes can result 

in end organ dysfunction and failure which can involve the retina, 

kidneys, nerves, heart and blood vessels.1 The clinical relationship 

between diabetes and atherosclerotic cardiovascular disease are 

well established, with the risk for cardiovascular disease (CVD) being 

significantly elevated in patients with diabetes.2,3 

Moreover, CVD typically occurs one to two decades earlier in people 

with diabetes, with more aggressive, severe and diffuse distribution.4,5 

The first WHO global report on diabetes published in 2016 demonstrates 

that the number of adults living with diabetes has almost quadrupled 

since 1980 to 422 million adults and this is expected to rise to 552 

million by 2030.6,7 Thus, the need for effective novel therapeutic 

approaches for the treatment and/or prevention of diabetes and 

atherosclerotic disease is crucial.

Traditionally, the majority of cases of diabetes fall into two broad 

pathogenetic categories, type 1 (T1D) and type 2 (T2D). However, 

in some people this rigid classification is not applicable because 

other genetic, immunological or neuroendocrinological pathways are 

involved in its pathogenesis. T1D is related to an absolute lack of insulin 

due to a vaguely understood mechanism, where an immune-mediated 

destruction of pancreatic beta cells is the hallmark of the disorder, 

with hyperglycaemia only emerging when more than 90% of the beta 

cells are lost.8 T2D is the most common form of diabetes, accounting 

for 90–95% of cases. Its development is secondary to a relative insulin 

deficiency but the primary defect is insulin resistance.9

Various proposals and hypotheses have been developed to describe 

the mechanisms which are usually involved in the propagation of 

diabetes, mainly focusing on T2D. The increase in prevalence of the 

condition has been related to well-recognised risk factors, such as 

the adoption of a western lifestyle, sedentary lives, lack of physical 

activity and an energy-dense diet.10,11 Genetic predisposition, ethnicity 

and ageing are not modifiable risk factors for T2D, while others, 

such as being overweight or obese, an unhealthy diet, insufficient 

physical activity and smoking are modifiable through behavioural and 

environmental changes. However, increasing evidence has shown 

that inflammatory pathways are the principal, common pathogenetic 

mediators in the natural course of diabetes under the stimulus of the 

risk factors described above.12

In this article, we will highlight the emerging role of inflammation in 

the pathophysiology of diabetes and we will analyse the implicated 

inflammatory pathways and biomarkers of inflammation in diabetes 

and metabolic diseases. The focus of this article is to provide an 
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overview of the current state of knowledge on anti-inflammatory 

therapies for diabetes, along with perspectives on future therapies for 

the disease.

Historical Perspectives
Observational studies provided the first evidence for the possible 

association between inflammation and diabetes. Over a century 

ago, the administration of high doses of sodium salicylate led to 

decreased glycosuria in people with a suspected or definite diagnosis 

of diabetes.13,14 Later studies on the role of inflammation in diabetes, 

revealed that this hypoglycaemic action was related to the inhibition of 

the serine kinase IkappaB kinase-beta (IKKbeta), which correlates with 

the post-receptor action of insulin.15

A landmark study to correlate inflammation with diabetes was 

conducted in animal models by Hotamisiligil et al., in 1993 and 

it revealed that the role of tumour necrosis factor-alpha (TNF-

alpha) in obesity and particularly in insulin resistance and diabetes.16 

Epidemiologic associations of inflammation with obesity and T2D were 

made when circulating concentrations of markers and mediators 

of inflammation and acute-phase reactants including fibrinogen, 

C-reactive protein, interleukin (IL)-6, plasminogen activator inhibitor-1, 

sialic acid and white cells, have been shown to be elevated in these 

conditions.17–21 Over the next decades, numerous studies on human 

and animal models provided further supporting evidence for the 

role of inflammation in the initiation and progression of diabetes.12,22 

Accumulative evidence suggests that chronic activation of pro-

inflammatory pathways in target cells of insulin action may contribute 

to obesity, insulin resistance and related metabolic disorders including 

T2D.22 The identification of potential pathways connecting inflammation 

to diabetes has produced growing interest in targeting inflammation 

to help prevent and control diabetes and related conditions, as well 

as improving risk stratification for diabetes by using inflammatory 

biomarkers as potential indexes.23,24

Inflammation in Type 1 Diabetes 
T1D is an autoimmune disorder characterised by a selective, specific 

destruction of insulin-producing pancreatic beta cells, without 

apparent pathological alterations of other Langerhans cells.25 However, 

T1D shows significant heterogeneity in regard to the age of onset, 

severity of autoimmune response and efficacy of therapy, while it 

has also been demonstrated that both humoral and cellular immunity 

is involved in the pathogenesis of T1D.26–28 The first theories about 

predisposition support that environmental trigger factors in early life, 

such as infections, nutrition and chemicals that are able to activate 

self-targeting immune cascades, remain applicable even though the 

initial event is still unclear.29,30

Inflammatory Infiltrates in Type 1 Diabetes
Progress in understanding the pathophysiology of T1D has been 

made in parallel with the advances in the field of immunology. 

The predominant theory is that the beta cell pancreatic islets in 

patients with T1D are inflamed, called insulitis, through the course 

of T1D. Anderson et al., demonstrated that failure in both central 

and peripheral immune tolerance mechanisms contribute to the 

emergence of autoreactive T cells in the periphery of non-obese mice 

with diabetes.31 Regulatory T cells (Tregs) have been shown to also 

be defective in this autoimmune disease setting, along with evidence 

from animal models demonstrating the participation of both CD4+ and 

CD8+ T cells (effector T-cells/Teff) in the development of T1D as they 

target several beta cell autoantigens and related peptide epitopes.32–35 

Moreover, by using adoptive T-cell transfer models of T1D, it has been 

demonstrated that T-cell subtypes are capable of inducing destructive 

peri-islet inflammatory infiltrate and overt diabetes.36,37 This was further 

depicted in human studies using pancreas samples obtained post 

mortem from subjects diagnosed with recent-onset T1D.27,38

Interestingly, the immune B cell (CD20+) profile also changes during 

disease progression, as initial studies found they align closely with 

the migration of CD8+ T cells, following two different patterns, either 

that of high or low infiltration in islets as reported by Wilcox et 

al.27,38 Macrophages are also critical mediators of islet inflammation 

due to their ability to secrete cytokines, such as Interleukin 1 beta 

(IL-1beta) and tumour necrosis factor alpha (TNF-alpha) and produce 

reactive oxygen species (ROS).27,39 Additional studies have shown 

that the surrounding pancreatic exocrine tissue is abundant in both 

lymphocytes and neutrophils in T1D and it is suspected that these cells 

might also contribute to the evolution of disease.40,41 In some studies, 

dendritic cells, natural killer (NK) cells and NKT cells have also been 

found in the islet infiltrate and may have a partial role in the whole 

process, however, it seems that overall the interaction among different 

cell types regulates diabetes progression.42,43

Mediators of Inflammation in Type 1 Diabetes
The three cytokines that seem to be implicated in the inflammation 

of pancreatic beta cells in T1D, are the synergic action of interferon 

gamma (IFN-gamma) and the innate inflammatory cytokines TNF-

alpha and IL-1beta.44 The combined action of these inflammatory 

molecules results in the upregulation of inducible nitric oxide synthase 

(iNOS), with subsequent production of nitric oxide (NO).45 However, 

Figure 1: Inflammatory Mediators in Type 1 Diabetes

Activation of several immune cells are involved in pancreatic beta-cell death through a 
variety of inflammatory cytokines. Regulatory T cells are defective in this autoimmune 
disease, while effector T-cells (Teff) participate in the development of type 1 diabetes 
targeting several beta-cell autoantigens and related peptide epitopes. The profile of immune 
B cells also changes during disease progression and macrophages are also critical mediators 
of islet inflammation due to their direct toxicity on beta-cells by reactive oxygen species. 
Dendritic cells, natural killer cells and natural killer T cells may have a partial role in the 
process.
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even though ROS plays a role in beta cell destruction, more recent 

studies have demonstrated that NO is not implicated in the damage 

of pancreatic beta cell.46 Furthermore, studies demonstrating that the 

biology of the beta cell could directly influence the response to an 

inflammatory environment, through specific gene-guided modulation 

of beta cell apoptosis induced by IFN-gamma modulated by the PTPN2 

gene (Figure 1).47

The mechanisms mentioned above strongly suggest that multiple 

pathways may exist which can contribute to pancreatic beta cell death. 

During this process, the control and regulation of local inflammatory 

cytokines production are likely to be critical factors in determining 

the outcome of the autoimmune progression. The disruptive effects 

of inflammatory and autoimmune-mediated pancreatic islet attack 

may lead to a vicious cycle where initial cytokine stress may urge the 

metabolic stress and an additional loss in beta cell function.48

Anti-Inflammatory Trials on Type 1 Diabetes
Given the obvious genetic influences in the initiation and progression 

of T1D, the immune cell type and the pattern that occurs in any given 

patient offers an important perspective on the design of clinical trials 

intended to slow or terminate the progression of the disease. Two 

initial clinical trials with rituximab, a monoclonal anti-CD20 antibody, 

were only partially successful.49,50 Furthermore, strategies are being 

developed targeting the antigen-specific T-cell response, such as 

the application of plasmid DNA (pDNA) vaccination with promising 

results.51 Moreover, two humanised anti-CD3 monoclonal antibody 

(mAbs), teplizumab and otelixizumab, have been evaluated in people 

with new and recently diagnosed T1D and showed a reduced rate of 

loss of beta cell function in the majority of participants.52

Cytokines are another promising target for therapy for T1D, given 

their involvement in the process of beta cell pathology. IL-1beta and 

TNF-alpha appear to be attractive initial targets for designing clinical 

trials based on this concept. A pilot study examined the effects of 

an anti-TNF-alpha therapy, etanercept, on paediatric patients newly 

diagnosed with T1D and demonstrated an increased endogenous 

insulin production and better metabolic control.53 Administration of 

alpha-1 antitrypsin (AAT), an anti-inflammatory serum protein, to a 

small group of people with T1D resulted in a reduced IL-1beta response 

in monocytes and dendritic cells and improved beta cell function.54 

Furthermore, given the broad anti-inflammatory properties of vitamin 

D, it has also been identified as a potential therapeutic target.55 

However, small studies of vitamin D supplementation in recent onset 

T1D have only resulted in modest beta cell protection.56,57

On a larger scale, interleukin-1 receptor antagonist (IL-1RN) and 

human monoclonal IL-1beta antibody were employed in two 

randomised, placebo-controlled trials in people with recent onset 

T1D.58 Canakinumab and anakinra were found to be safe but they were 

not effective as single immunomodulatory drugs in recent-onset T1D 

and they did not result in preserved beta cell function, as measured by 

stimulated C-peptide area under the curve (Table 1).

In conclusion, the immunotherapeutic trials that have been completed 

in human T1D have always focused on patients after clinical onset of 

diabetes, well after the establishment of targeted adaptive immune 

responses towards beta cell islets. Targeting these factors is likely to 

preserve remaining beta cell function, but curative treatments can only 

be realistically achieved by attempting at the same time to replace 

part of the beta cell mass that has been lost during the autoimmune 

process.

Metabolic Disorders and Inflammation in 
Type 2 Diabetes 
Inflammation in Type 2 Diabetes
Several pathophysiological studies have strengthened our 

understanding of insulin resistance and secretion in the course of 

disease onset and progression.59,60 Subjects at risk of T2D display an 

initial state of insulin resistance compensated by hypersecretion of 

Table 1: Representative Clinical Trials of Anti-inflammatory Treatments on Type 1 Diabetes

Mechanism of action Drug Main findings References

Monoclonal anti-CD20 antibody Rituximab Rate of C peptide decline ↓, lower insulin requirements, HbA1c ↓ 49,50

Engineered DNA plasmid encoding proinsulin BHT-3021 ↓ CD8+ T cells frequency reactive to proinsulin, C peptide 
preservation, no change to Interferon-gamma, IL-4, IL-10

51

Proinsulin peptide Human leukocyte antigen-DR4 
(DRB1*0401)

↑ C-peptide, ↑ proinsulin-stimulated IL-10 production, favourable 
beta-cell stress markers (proinsulin/C-peptide ratio)

189

TNF antagonism Etarnecept HbA1c  ↓, endogenous insulin production ↑ 53

Anti-inflammatory serum protein Alpha 1 antitrypsin (AAT) IL-1beta response to monocytes and dendritic monocytes ↓,  
beta-cell function improvement

54

Vitamin D analogue Alfacalcidol Beta-cell preservation especially in male subjects 56

Vitamin D analogue Calcitriol ↑ in fasting C peptide from diagnosis to 1 year, daily insulin  
dose ↓ in the treatment group

190

IL-1 receptor blockade Anakinra No C peptide response 58

IL-1 receptor blockade Anakinra ↓ insulin requirements compared with controls, ↓ insulin dose 
adjusted

191

IL-1beta antagonism Canakinumab No C peptide response 58

IL-1 receptor blockade 
IL-1beta antagonism (plasma-induced 
transcriptional meta-analysis) 

Anakinra/canakinumab Immunomodulation/reverse relationship between inflammation  
and C peptide stimulation 

192

ALPHAti-CD3 mAbs Teplizumab/otelixizumab 52

CD20 = cluster of differentiation 20, IL = interleukin, mAbs = monoclonal antibodies, TNF = tumour necrosis factor. 
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insulin in the beta cells. However, in the clinical course of the disease 

this pancreatic functional reserve is eventually unable to cope with 

the required insulin secretion and by the time diabetes is diagnosed, 

beta cells are no longer able to secrete enough insulin.61 Although the 

relative contribution of beta cell dysfunction and insulin resistance 

can vary in people with T2D, it is generally accepted that abnormal 

insulin sensitivity precedes the clinical diagnosis of diabetes by up 

to 15 years.62 Therefore, along with mechanistic studies investigating 

mechanisms forming the basis of insulin resistance, more recent 

research has also focused on the pathways leading to beta cell failure.63

The Role of Adipose Tissue and Obesity
There has been intensive research conducted into the pathophysiology 

of diabetes and its association with obesity and the biological 

role of adipose tissue. As addressed before, insulin resistance is 

a key component in the course of T2D. Liver and muscles have 

long been recognised as major contributors of systemic insulin 

resistance.64 Fat accumulation in the liver (steatosis) precedes overt 

T2D, is commonly associated with obesity and is considered a major 

determinant of the reduced hepatic insulin sensitivity resulting in 

fasting hyperglycaemia.65–67 Furthermore, it is now well accepted 

that the accumulation of energy due to excessive calorie intake and 

the lack of physical activity leads initially to fat accumulation in the 

subcutaneous tissue and later to other tissue compartments such as 

the liver, pancreas, muscles, perivascular and pericardium.67 This fat 

accumulation increases tissues’ insulin resistance, while pancreatic fat 

accumulation further determines beta cell dysfunction.64,68

Obesity and its associated conditions including metabolic syndrome, 

hypertension and dyslipidaemia, is positively associated with 

concentrations of inflammatory biomarkers, which are predictive 

of insulin resistance and the incidence of T2D and CVD.69–71 Obesity 

and metabolic syndrome specifically comprise a cluster of diseases 

associated with too much food and insufficient physical activity, 

conditions where sub-acute chronic inflammation is a common and 

potentially unifying mechanistic cause, accompanied by activation 

of at least two major inflammatory pathways, stress-activated Jun 

N-terminal kinases (JNK) and the transcription factor NF-kappaB.12,16,72–77 

This inflammatory state via production of pro-inflammatory cytokines, 

is further amplified by adipokines, though a number of studies 

have demonstrated that adipokines stimulate additional inflammatory 

responses in obesity and promote obesity-induced metabolic and 

cardiovascular diseases.78

Animal studies have demonstrated that brown adipose tissue (BAT) 

has an important role in regulating energy and glucose homeostasis 

and is associated with peripheral insulin resistance and glucose 

levels.79–81 However, white adipose tissue (WAT) and mainly visceral 

WAT (around the trunk, upper body or abdomen) appears to be the 

major source of inflammatory markers in T2D, but also a target of the 

inflammatory process in people with diabetes. It produces cytokines 

and several other bioactive substances involved in the inflammatory 

pathways, such as TNF-alpha, IL-1, IL-6, IL-10, leptin, adiponectin, 

monocyte chemoattractant protein, angiotensinogen, resistin, 

chemokines, serum amyloid protein, and many others collectively 

referred to as adipokines.82–85 Further infiltration of adipose tissue 

by macrophages and immune cells (B cells and T cells) trigger local 

and systemic chronic low-grade inflammation, by producing more 

cytokines and chemokines that serve as a pathologic link between 

obesity, insulin resistance and diabetes.86

The Role of Gut Microbiota in Type 2 Diabetes
The role of the gut in the pathophysiology of diabetes can be 

approached from two different viewpoints. Studies have suggested 

that several mechanisms may be involved in weight loss and diabetes 

control after bariatric surgery, beyond malabsorption or anatomical 

restriction.87 Indeed, complex changes in multiple gut hormones have 

been shown after bariatric procedures and have been proposed as 

adjunctive mechanisms for short- and long-term positive metabolic 

effects, serving as possible novel therapeutic approaches to obesity 

and insulin resistance.88,89

In the past few years, a two-way relationship between the gut 

microbiome in the host’s energy balance and immune function has 

been demonstrated.90 The gut microbiome seems to differ between 

obese and lean subjects, flora composition influences metabolism and 

inversely, diet and metabolic status influence the composition of the 

gut flora, while a faecal microbiome transplantation from lean donors 

to insulin-resistant subjects results in beneficial metabolic effects.91–94 

It has been postulated that products from the gut microbiome 

may interact with the immune system inducing a tissue metabolic 

modification, which feeds the molecular origin of the low-grade 

inflammation that characterises the onset of obesity and diabetes.95 

An altered gut microbiota can directly affect immune cells in 

the gut and indirectly affect immune cells via microbial products 

including LPS, metabolites and short chain fatty acid (SCFAs), all 

of which can affect adipogenesis and/or insulin resistance.96–101 

Lipopolysaccharide (LPS) is believed to cause low-grade inflammation 

mediated by the induction of inflammatory cytokines by immune 

cells and adipocytes, while SCFAs can modulate gene expression 

of human monocytes and reduce pro-inflammatory cytokine and 

chemokine production.102 SCFAs can also promote regulatory T-cell 

generation through several pathways, thereby suppressing the 

function of inflammatory T cells. These are able to block IFN-gamma 

inducible protein 10 (IP-10) release in human colonic sub-epithelial 

myofibroblasts, acting not only on immune cells systemically but 

also on intestinal tissue cells locally.103,104

The Role of Pancreatic Beta Cell Failure in 
Type 2 Diabetes
Independent of the aetiopathogenetic mechanism among the different 

types of diabetes, the common pathway seems to be the inflammation 

in the pancreatic Langerhans beta cell islets (insulitis), in the concept 

of an auto-inflammatory process, which results in reduction in both 

beta cell number and function.105 It has been suggested that in people 

with a genetic predisposition, the ‘stressed’ beta cell may stimulate 

local inflammation and modify the balance between beta cell mass and 

function in the islets of Langerhans.106,107 Several experimental models 

as well as observational studies in humans have demonstrated that 

macrophages play a key role in the islet inflammation seen in T2D.108–111 

Inflammasome/IL-1beta signalling is the most common, well-studied 

and high-impact pathway activated in islets of multiple T2D models 

that cause beta cell dysfunction.112,113 It is likely that other immune cell 

types are involved in islet inflammation in T2D, while islet autoimmunity 

has also been suggested to contributes to beta cell functional decline 

during the course of T2D.114,115

Among factors that stimulate islet macrophages to secrete IL-1beta 

in vivo in human islets are amyloid polypeptide, free fatty acids 

(FFAs) and endocannabinoids.110,111,116 However, it has been assumed 
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that hyperglycaemia is produced initially in the inflammation in 

pancreatic beta cells by inducing apoptotic mechanisms.117 ALPHA 

particular pathway was proposed by Maedler et al. who showed that 

hyperglycaemia may induce the production of IL-1beta by stimulating 

pro-apoptotic receptor FFAs on beta cells.118 

FFAs can also produce and secrete IL-1beta and IL-1-dependent pro-

inflammatory cytokines in pancreatic islets and thus to reduce the 

inflammation. In addition, after its initial secretion, IL-1beta regulates 

its production in pancreatic beta cells by auto stimulation, while this 

process also increases nitric oxide production leading to reduction in 

ATP concentration in the mitochondria, which can cause further beta 

cell dysfunction and reduced insulin secretion.119–122 Oxidative stress 

may also potentiate the generation of ROS along with other pro-

inflammatory cytokines and chemokines in the beta cells that disrupts 

the blood flow into them and destroys their function.108,123,124

Experimental studies have confirmed that IL-6 induces apoptosis in 

pancreatic islets together with other inflammatory cytokines and acts 

as a predictor and pathogenic marker for the progression of T2D.69,124,125 

TNF-alpha is also considered to play an essential role, by creating a 

linkage among insulin resistance, obesity and islet inflammation.125 Its 

overproduction in adipose tissue seems to feed the inflammation and 

beta cell death in pancreatic islets and produces additional insulin 

resistance in peripheral tissues.126,127

Evidence of Inflammation in Other Organs in People 
with Type 2 Diabetes
Immune system activation is highly related to T2D incidence and 

progression and adaptive and innate immunity are involved in adipose 

tissue inflammation. The phenotype switching of macrophages from 

predominantly anti-inflammatory M2-type to increased proportions 

of pro-inflammatory M1-type macrophages plays a crucial role in 

the initiation and amplification of islet inflammation.128 However, the 

evidence shows that the recruitment of B cells and T cells precedes 

adipose tissue infiltration by macrophages.86

Moreover, several other organs have been reported to participate in 

the metabolic homeostasis and inflammatory state in T2D, such as the 

liver, the neural system and possibly skeletal muscle.129–133 However, 

more research is needed to support this evidence (Figure 2).

Current Knowledge on Diabetes Treatments
Drugs with Pleiotropic Effects
The current therapeutic approaches to T2D have anti-inflammatory 

properties in addition to their major modes of action. Non-pharmacological 

therapies, such as lifestyle interventions, but also pharmacological 

and bariatric surgical approaches for weight loss, appears to reduce 

inflammation assessed as circulating CRP and IL-6 concentrations, and 

improves cardiovascular and all-cause mortality.134–138

Statins also have anti-inflammatory properties beyond their ability 

to lower levels of low-density lipoproteins (LDL) cholesterol. The 

Justification for the Use of Statin in Prevention: An Intervention Trial 

Evaluating Rosuvastatin (JUPITER) demonstrated that rosuvastatin 

reduced high-sensitivity CRP along with LDL cholesterol, however the 

effects of statins on glycaemic control are conflicting, implying that 

targeting inflammation with statins does not improve glycaemia and 

therefore does not provide an integrated anti-inflammatory approach 

for diabetes and CVD.139–141

Anti-diabetic agents, including insulin, have intrinsic anti-inflammatory 

effects associated with their primary mechanisms of action and 

are also associated with reductions in inflammatory markers. Insulin 

itself decreases NF-kappaB activity in peripheral blood mononuclear 

cells which reduces inflammation.142 The anti-inflammatory actions of 

thiazolidinediones through binding and activation to the peroxisome 

proliferator-activated receptor gamma (PPARgamma), seems to be 

related to trans-repression of NF-kappaB and reduced expression of 

NF-kappaB targets.143 

In addition to its metabolic effects, metformin has anti-inflammatory 

actions that appear to be independent of glycaemia and are most 

prominent in immune cells and vascular tissues.144–150 Dipeptidyl 

peptidase-4 inhibitors (DPP-4) and GLP-1 receptor agonists also have 

intrinsic anti-inflammatory properties, however, beyond their anti-

diabetic effects, the contribution of inflammation reduction to diabetes 

and cardiovascular improvements remains unknown.151–153 Finally, a new 

class of anti-diabetic drugs, sodium–glucose cotransporter-2 inhibitors 

(SGLT2 inhibitors) acts by increasing renal excretion of glucose. 

Preliminary data in humans demonstrate a possible improvement 

on the circulating biomarkers of inflammation by SGLT2-inhibitors; 

however, more studies are needed.152

Anti-Inflammatory Drugs in Type 2 Diabetes
Multiple medical approaches that directly target inflammatory pathways 

have been studied in the past few years supporting the concept of anti-

inflammatory treatment for cardiometabolic diseases, such as diabetes 

and atherosclerotic CVD.154–156 For a long time, salicylates, especially 

aspirin, have been used to treat thrombosis in primary and secondary 

CVD prevention, as well as to treat rheumatoid diseases.157,158 They 

were the first class of drugs reported to lower glucose in diabetes 

more than a century ago, however, several studies with salicylate 

products have demonstrated an improved metabolic profile in patients 

with obesity and diabetes, suggesting a potential efficacy for diabetes 

prevention and control.159–166

Methotrexate is a disease-modifying drug broadly used to treat 

rheumatic diseases among other conditions, while its efficacy on 

Inflammation has a key role in the pathophysiology of type 2 diabetes and its associated 
metabolic abnormalities.

Figure 2: The Vicious Cycle of Inflammation in Various 
Target Organs in Type 2 Diabetes
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glycaemic control was demonstrated in a small cohort study.167 The 

preliminary data drove the design and conduction of a large clinical 

trial with methotrexate among patients with previous MI and either T2D 

or metabolic syndrome, however, methotrexate had neutral findings 

on IL-1b, IL-6 and CRP levels, while more data are anticipated for the 

effects on T2D.168

Biological Agents as Anti-Inflammatory Therapy 
in Type 2 Diabetes
Targeting cytokine production and secretion to prevent further 

activation of inflammation have been proposed with the intention of 

stopping the initiation and progression of T2D. TNF-alpha antagonists 

have been used to treat inflammatory conditions and have been 

associated with improved glycaemic control and decreased incident 

of diabetes, while more studies on patients with unfavourable 

cardiometabolic profile did not demonstrate adequate results, with 

the exception of a randomised 6-month trial.169–180

The mechanism of action of IL-1beta is consistent with the 

pathogenesis and progression of T2D is. Improved beta cell 

secretory function and glycaemia, as well as reduced inflammatory 

biomarkers in people with diabetes and pre-diabetes have 

Table 2: Representative Clinical Trials of Anti-Inflammatory Treatments on Type 2 Diabetes – Metabolic Profile

Mechanism of Action Drug Main Findings Reference

IL-1 receptor blockade Anakinra HbA1c, leukocyte ↓, CRP↓ insulin secretion↑ 182

IL-1 receptor blockade Anakinra Sustained CRP ↓, insulin secretion ↑, insulin  
requirement ↓

181

IL-1 receptor blockade Anakinra Insulin sensitivity ↑ 193

IL-1 receptor blockade Anakinra Insulin secretion ↑ (first-phase insulin secretion 
improved)

194

IL-1 receptor blockade Anakinra Insulin secretion↑ 183

IL-1beta antagonism Gevokizumab HbA1c ↓, CRP ↓, insulin secretion ↑ 112

IL-1beta antagonism Canakinumab Insulin secretion ↑, CRP ↓ 185

IL-1beta antagonism Canakinumab CRP ↓, HbA1c ↓, insulin secretion ↑ (not statistically 
significant)

184

IL-1beta antagonism Canakinumab Significant CRP and IL-6 ↓, 6 month HbA1c ↓, but not 
consistent Hba1c ↓ long-term

188

IL-1beta antagonism Canakinumab CRP ↓, fibrinogen ↓, IL-6 ↓, no effect on HbA1c, glucose 
and insulin levels

187

IL-1beta antagonism LY2189102 HbA1c ↓, CRP ↓, insulin secretion ↑ 186

IKKbeta–NF-kappaB inhibition Salsalate FBG ↓, CRP ↓, insulin sensitivity ↑, adiponectin ↑ 160

IKKbeta–NF-kappaB inhibition Salsalate FBG ↓, CRP ↓, adiponectin ↑ 159

IKKbeta–NF-kappaB inhibition Salsalate FBG ↓, insulin ↑, CRP ↓ 195

IKKbeta–NF-kappaB inhibition Salsalate HbA1c ↓, FBG ↓, triglyceride ↓, adiponectin ↑ 165

IKKbeta–NF-kappaB inhibition Salsalate HbA1c ↓, FBG ↓, insulin secretion ↑, triglyceride ↓ 162

IKKbeta–NF-kappaB inhibition Salsalate FBG ↓, adiponectin ↑ 163

IKKbeta–NF-kappaB inhibition Salsalate HbA1c ↓, FBG ↓, triglyceride ↓, leukocyte ↓, uric acid ↓, 
adiponectin ↑

164

TNF antagonism CDP571 No effect on insulin sensitivity 176

TNF antagonism Single dose of soluble TNF receptor–Fc 
fusion protein (Ro 45–2081)

No effect on insulin sensitivity 177

TNF antagonism Soluble TNF receptor–Fc fusion protein 
etanercept

CRP ↓, insulin secretion ↑, no effect on insulin  
sensitivity

178

TNF antagonism Soluble TNF receptor–Fc fusion protein 
etanercept

CRP ↓, adiponectin ↑, LDL ↓, no effect on insulin 
sensitivity

179

TNF antagonism Soluble TNF receptor–Fc fusion protein 
etanercept

FBG ↓ 180

TNF antagonism Infliximab Fasting glucose improvement, ratio of high molecular 
weight to total adiponectin ↑, sICAM-1 ↑, no effect  
on CRP

170

Decrease in TNF and IL-1beta levels by an 
unknown mechanism of action

Diacerein HbA1c ↓, FBG ↓, insulin secretion ↑ 196

DHFR inhibitor – antimetabolite Low-dose methotrexate No effects on CRP, IL-1beta or IL-6 168

DHFR inhibitor (DMARD) – combination with 
sulphasalazine  
glycocorticosteroids/hydroxychloroquine 

Methotrexate HbA1c ↓ 167

CRP: C-reactive protein; DHFR = dihydrofolate reductase inhibitor; FBG = fasting blood glucose; IKKbeta = IkappaB kinase-beta; IL = Interleukin; mAbs = monoclonal antibodies;  
NF-kappaB = nuclear factor-kappaB; sICAM-1 = soluble intercellular adhesion molecule-1; TNF = tumour necrosis factor.
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been demonstrated by IL-1beta antagonists, such as anakinra 

and gevokizumab.112,120,181–6 Studies on CVD and atherosclerosis 

prevention with IL-1beta antagonists have also been conducted. 

One study showed that canakinumab reduced the inflammatory 

proteins CRP, IL-6, and fibrinogen in persons with T2D and high 

cardiovascular risk with no effect on HbA1C, glucose, and insulin 

at 4 months, while the large randomised trial with canakinumab 

– Canakinumab Anti-Inflammatory Thrombosis Outcome Study 

(CANTOS) – over a median period of 3.7 years did not reduce the 

incidence of diabetes in patients with prior MI and high-sensitivity 

CRP (hsCRP) ≥2 mg/l (Table 2).187,188

Future Perspectives for the Treatment of 
Diabetes 
Novel approaches on T2D to evaluate anti-inflammatory diets and 

modulate an individual’s microbiome are under study. Clinical trials 

investigating the effects of vitamin D supplementation on serum 

levels of inflammatory markers have provided inconsistent results, 

with no evidence of effects in most trials, or effects on selected 

markers in others. There are also studies investigating whether 

antagonists of leukotriene production enzymes – 5-lipoxygenase 

(5-LO), 5-LO-activating protein and LTA4 hydrolase – or receptor binding 

BLT1 have cardiometabolic outcome benefits, however these results 

have not yet been reported. The potential for targeting cholinergic 

pathways, immune modulation or other mediators of inflammation 

such as JNK and toll-like receptors (TLRs) are also being researched.

Conclusion
The increasing prevalence of diabetes makes it imperative that 

research should focus on its prevention as well as its treatment. An 

improved understanding of the mechanisms linking inflammation to 

diabetes and related complications has stimulated interest in targeting 

inflammatory pathways as part of the strategy to prevent or control 

diabetes and its complications. 

T1D is considered to be more of an immunological response rather 

than a metabolic disorder and the preliminary results of trials using 

anti-inflammatory and immunomodulatory medication are promising. 

These treatments in combination with possible use of stem cells 

to regenerate pancreatic beta cells could potentially be the key 

to permanent treatment of T1D. Therefore, after a holistic review 

of the possible mechanisms that lead to T1D and T2D and the 

numerous already described inflammation pathways that are involved, 

it becomes more and more clear that future research should focus on 

simultaneous suppression of various inflammatory response pathways 

rather than focusing on one pathway at a time. 
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