739 research outputs found
Observation of shock waves in a large Bose-Einstein condensate
We observe the formation of shock waves in a Bose-Einstein condensate
containing a large number of sodium atoms. The shock wave is initiated with a
repulsive, blue-detuned light barrier, intersecting the BEC, after which two
shock fronts appear. We observe breaking of these waves when the size of these
waves approaches the healing length of the condensate. At this time, the wave
front splits into two parts and clear fringes appear. The experiment is modeled
using an effective 1D Gross-Pitaevskii-like equation and gives excellent
quantitative agreement with the experiment, even though matter waves with
wavelengths two orders of magnitude smaller than the healing length are
present. In these experiments, no significant heating or particle loss is
observed.Comment: 7 pages, 7 figure
Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
The process of stimulated Raman adiabatic passage (STIRAP) provides a
possible route for the generation of a coherent molecular Bose-Einstein
condensate (BEC) from an atomic BEC. We analyze this process in a
three-dimensional mean-field theory, including atom-atom interactions and
non-resonant intermediate levels. We find that the process is feasible, but at
larger Rabi frequencies than anticipated from a crude single-mode lossless
analysis, due to two-photon dephasing caused by the atomic interactions. We
then identify optimal strategies in STIRAP allowing one to maintain high
conversion efficiencies with smaller Rabi frequencies and under experimentally
less demanding conditions.Comment: Final published versio
Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels
A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles
Networks of noisy oscillators with correlated degree and frequency dispersion
We investigate how correlations between the diversity of the connectivity of
networks and the dynamics at their nodes affect the macroscopic behavior. In
particular, we study the synchronization transition of coupled stochastic phase
oscillators that represent the node dynamics. Crucially in our work, the
variability in the number of connections of the nodes is correlated with the
width of the frequency distribution of the oscillators. By numerical
simulations on Erd\"os-R\'enyi networks, where the frequencies of the
oscillators are Gaussian distributed, we make the counterintuitive observation
that an increase in the strength of the correlation is accompanied by an
increase in the critical coupling strength for the onset of synchronization. We
further observe that the critical coupling can solely depend on the average
number of connections or even completely lose its dependence on the network
connectivity. Only beyond this state, a weighted mean-field approximation
breaks down. If noise is present, the correlations have to be stronger to yield
similar observations.Comment: 6 pages, 2 figure
Observation of Superfluid Flow in a Bose-Einstein Condensed Gas
We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred
by a macroscopic object, a blue detuned laser beam, using nondestructive {\em
in situ} phase contrast imaging. A critical velocity for the onset of a
pressure gradient has been observed, and shown to be density dependent. The
technique has been compared to a calorimetric method used previously to measure
the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure
How to observe the Efimov effect
We propose to observe the Efimov effect experimentally by applying an
external electric field on atomic three-body systems. We first derive the
lowest order effective two-body interaction for two spin zero atoms in the
field. Then we solve the three-body problem and search for the extreme
spatially extended Efimov states. We use helium trimers as an illustrative
numerical example and estimate the necessary field strength to be less than 2.7
V/angstrom.Comment: 4 pages, 2 postscript figures, psfig.sty, revte
Entangling Two Bose-Einstein Condensates by Stimulated Bragg Scattering
We propose an experiment for entangling two spatially separated Bose-Einstein
condensates by Bragg scattering of light. When Bragg scattering in two
condensates is stimulated by a common probe, the resulting quasiparticles in
the two condensates get entangled due to quantum communication between the
condensates via probe beam. The entanglement is shown to be significant and
occurs in both number and quadrature phase variables. We present two methods of
detecting the generated entanglement.Comment: 4 pages, Revte
Observation of anomalous spin-state segregation in a trapped ultra-cold vapor
We observe counter-intuitive spin segregation in an inhomogeneous sample of
ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially
selective microwave spectroscopy to verify a model that accounts for the
differential forces on two internal spin states. In any simple understanding of
the cloud dynamics, the forces are far too small to account for the dramatic
transient spin polarizations observed. The underlying mechanism remains to be
elucidated.Comment: 5 pages, 3 figure
Bogoliubov spectrum and Bragg spectroscopy of elongated Bose-Einstein condensates
The behavior of the momentum transferred to a trapped Bose-Einstein
condensate by a two-photon Bragg pulse reflects the structure of the underlying
Bogoliubov spectrum. In elongated condensates, axial phonons with different
number of radial nodes give rise to a multibranch spectrum which can be
resolved in Bragg spectroscopy, as shown by Steinhauer {\it et al.} [Phys. Rev.
Lett. {\bf 90}, 060404 (2003)]. Here we present a detailed theoretical analysis
of this process. We calculate the momentum transferred by numerically solving
the time dependent Gross-Pitaevskii equation. In the case of a cylindrical
condensate, we compare the results with those obtained by linearizing the
Gross-Pitaevskii equation and using a quasiparticle projection method. This
analysis shows how the axial-phonon branches affect the momentum transfer, in
agreement with our previous interpretation of the observed data. We also
discuss the applicability of this type of spectroscopy to typical available
condensates, as well as the role of nonlinear effects.Comment: 8 pages, 7 figures, minor changes, typos correcte
- …