14 research outputs found

    Radiation Dose–Volume Effects in the Lung

    Get PDF
    The three dimensional dose/volume/outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold “tolerance dose/volume” levels. There are strong volume and fractionation effects

    Recurrences after intensity modulated radiotherapy for head and neck squamous cell carcinoma more likely to originate from regions with high baseline [18F]-FDG uptake.

    No full text
    BACKGROUND AND PURPOSE: To analyze the recurrence pattern in relation to target volumes and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography in head and neck squamous cell carcinoma (HNSCC) patients treated with definitive chemoradiation. MATERIAL AND METHODS: 520 patients received radiotherapy for HNSCC from 2005–2009. Among 100 patients achieving complete clinical response and a later recurrence, 39 patients with 48 loco-regional failures had a recurrence CT scan before any salvage therapy. The estimated point of origin of each recurrence was transferred to the planning CT by deformable image co-registration. The recurrence position was then related to the delineated target volumes and iso-SUV-contours relative to the maximum standard uptake value (SUV). We defined the recurrence density as the total number of recurrences in a sub-volume divided by the sum of that volume for all patients. RESULTS: 54% (95% CI 37–69%) of recurrences originated inside the FDG-positive volume and 96% (95% CI 86–99%) in the high dose region. Recurrence density was significantly higher in the central target volumes (P<0.0001) and increased with increasing FDG avidity (P=0.036). CONCLUSIONS: The detailed pattern-of-failure data analysis suggest that most recurrences occur in the FDG PET positive areas or the solid tumor

    Gating has a negligible impact on dose delivered in MRI-guided online adaptive radiotherapy of prostate cancer

    No full text
    BACKGROUND AND PURPOSE: MR-guided radiotherapy (MRgRT) allows real-time beam-gating to compensate for intra-fractional target position variations. This study investigates the dosimetric impact of beam-gating and the impact of PTV margin on prostate coverage for prostate cancer patients treated with online-adaptive MRgRT. MATERIALS AND METHODS: 20 consecutive prostate cancer patients were treated with online-adaptive MRgRT SBRT with 36.25 Gy in 5 fractions (PTV D(95%) >/= 95% (N = 5) and PTV D(95%) >/= 100% (N = 15)). Sagittal 2D cine MRIs were used for gating on the prostate with a 3 mm expansion as the gating window. We computed motion-compensated dose distributions for (i) all prostate positions during treatment (simulating non-gated treatments) and (ii) for prostate positions within the gating window (gated treatments). To evaluate the impact of PTV margin on prostate coverage, we simulated coverage with smaller margins than clinically applied both for gated and non-gated treatments. Motion-compensated fraction doses were accumulated and dose metrics were compared. RESULTS: We found a negligible dosimetric impact of beam-gating on prostate coverage (median of 0.00 Gy for both D(95%) and D(mean)). For 18/20 patients, prostate coverage (D(95%) >/= 100%) would have been ensured with a prostate-to-PTV margin of 3 mm, even without gating. The same was true for all but one fraction. CONCLUSION: Beam-gating has negligible dosimetric impact in online-adaptive MRgRT of prostate cancer. Accounting for motion, the clinically used prostate-to-PTV margin could potentially be reduced from 5 mm to 3 mm for 18/20 patients

    Gating has a negligible impact on dose delivered in MRI-guided online adaptive radiotherapy of prostate cancer

    Full text link
    Background and purpose: MR-guided radiotherapy (MRgRT) allows real-time beam-gating to compensate for intra-fractional target position variations. This study investigates the dosimetric impact of beam-gating and the impact of PTV margin on prostate coverage for prostate cancer patients treated with online-adaptive MRgRT. Materials and methods: 20 consecutive prostate cancer patients were treated with online-adaptive MRgRT SBRT with 36.25 Gy in 5 fractions (PTV D95% ≥ 95% (N = 5) and PTV D95% ≥ 100% (N = 15)). Sagittal 2D cine MRIs were used for gating on the prostate with a 3 mm expansion as the gating window. We computed motion-compensated dose distributions for (i) all prostate positions during treatment (simulating non-gated treatments) and (ii) for prostate positions within the gating window (gated treatments). To evaluate the impact of PTV margin on prostate coverage, we simulated coverage with smaller margins than clinically applied both for gated and non-gated treatments. Motion-compensated fraction doses were accumulated and dose metrics were compared. Results: We found a negligible dosimetric impact of beam-gating on prostate coverage (median of 0.00 Gy for both D95% and Dmean). For 18/20 patients, prostate coverage (D95% ≥ 100%) would have been ensured with a prostate-to-PTV margin of 3 mm, even without gating. The same was true for all but one fraction. Conclusion: Beam-gating has negligible dosimetric impact in online-adaptive MRgRT of prostate cancer. Accounting for motion, the clinically used prostate-to-PTV margin could potentially be reduced from 5 mm to 3 mm for 18/20 patients. Keywords: Adaptive radiotherapy; Beam-gating; Deformable image registration; Dose accumulation; MR-guided radiotherapy; Margin assessment; Motion-mitigation; Prostate cancer; Prostate motion; Radiotherapy
    corecore