26,328 research outputs found

    Overlap of quasiparticle random-phase approximation states for nuclear matrix elements of the neutrino-less double beta decay

    Get PDF
    Quasiparticle random-phase approximation (QRPA) is applied to two nuclei, and overlap of the QRPA excited states based on the different nuclei is calculated. The aim is to calculate the overlap of intermediate nuclear states of the double-beta decay. We use the like-particle QRPA after the closure approximation is applied to the nuclear matrix elements. The overlap is calculated rigorously by making use of the explicit equation of the QRPA ground state. The formulation of the overlap is shown, and a test calculation is performed. The effectiveness of the truncations used is shown.Comment: 3 minor corrections and 1 minor chang

    Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    Get PDF
    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates

    Emission FTIR analyses of thin microscopic patches of jet fuel residue deposited on heated metal surface

    Get PDF
    Deposits laid down in patches on metal strips in a high pressure/high temperature fuel system simulator operated with aerated fuel at varying flow rates were analyzed by emission FTIR in terms of functional groups. Significant differences were found in the spectra and amounts of deposits derived from fuels to which small concentrations of oxygen-, nitrogen-, or sulfur-containing heterocyclics or metal naphthenates were added. The spectra of deposits generated on strips by heating fuels and air in a closed container were very different from those of the flowing fluid deposits. One such closed-container dodecane deposit on silver gave a strong surface-enhanced Raman spectrum

    Limit on T-violating P-conserving rhoNN interaction from the gamma decay of Fe-57

    Get PDF
    We use the experimental limit on the interference of M1 and E2 multipoles in the γ decay of 57Fe to bound the time-reversal-violating parity-conserving ρNN vertex. Our approach is a large-basis shell-model calculation of the interference. We find an upper limit on the parameter g¯ρ, the relative strength of the T-violating ρNN vertex, of close to 10^(-2), a value similar to the best limits from other experiments

    Quasielastic neutrino scattering from oxygen and the atmospheric neutrino problem

    Get PDF
    We examine several phenomena beyond the scope of Fermi-gas models that affect the quasielastic scattering (from oxygen) of neutrinos in the 0.1 -- 3.0 GeV range. These include Coulomb interactions of outgoing protons and leptons, a realistic finite-volume mean field, and the residual nucleon-nucleon interaction. None of these effects are accurately represented in the Monte Carlo simulations used to predict event rates due to μ\mu and ee neutrinos from cosmic-ray collisions in the atmosphere. We nevertheless conclude that the neglected physics cannot account for the anomalous μ\mu to ee ratio observed at Kamiokande and IMB, and is unlikely to change absolute event rates by more than 10--15\%. We briefly mention other phenomena, still to be investigated in detail, that may produce larger changes.Comment: In Revtex version 2. 14 pages, 3 figures (available on request from J. Engel, tel. 302-831-4354, [email protected]

    Probing r-Process Production of Nuclei Beyond Bi209 with Gamma Rays

    Get PDF
    We estimate gamma-ray fluxes due to the decay of nuclei beyond Bi209 from a supernova or a supernova remnant assuming that the r-process occurs in supernovae. We find that a detector with a sensitivity of about 10**(-7) photons/cm**2/s at energies of 40 keV to 3 MeV may detect fluxes due to the decay of Ra226, Th229, Am241, Am243, Cf249, and Cf251 in the newly discovered supernova remnant near Vela. In addition, such a detector may detect fluxes due to the decay of Ac227 and Ra228 produced in a future supernova at a distance of about 1 kpc. As nuclei with mass numbers A > 209 are produced solely by the r-process, such detections are the best proof for a supernova r-process site. Further, they provide the most direct information on yields of progenitor nuclei with A > 209 at r-process freeze-out. Finally, detection of fluxes due to the decay of r-process nuclei over a range of masses from a supernova or a supernova remnant provides the opportunity to compare yields in a single supernova event with the solar r-process abundance pattern.Comment: 24 pages, 3 figures, to appear in the October 10, 1999 issue of Ap

    Supernovae as the Site of the r-Process: Implications for Gamma-Ray Astronomy

    Get PDF
    We discuss how detection of gamma-ray emission from the decay of r-process nuclei can improve our understanding of r-process nucleosynthesis. We find that a gamma-ray detector with a sensitivity of 10**(-7)/cm**2/s at 100-700 keV may detect the emission from the decay of Sb125, Cs137, Ce144, Eu155, and Os194 produced in a future Galactic supernova. In addition, such a detector may detect the emission from the decay of Sn126 in the Vela supernova remnant and the diffuse emission from the decay of Sn126 produced by past supernovae in our Galaxy. The required detector sensitivity is similar to what is projected for the proposed Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA). Both the detection of gamma-ray emission from the decay of several r-process nuclei (e.g., Sb125 and Os194) produced in future Galactic supernovae and the detection of emission from the decay of Sn126 in the Vela supernova remnant would prove that supernovae are a site of the r-process. Furthermore, the former detection would allow us to determine whether or not the r-process nuclei are produced in relative proportions specified by the solar r-process abundance pattern in supernova r-process events. Finally, detection of diffuse emission from the decay of Sn126 in our Galaxy would eliminate neutron star/neutron star mergers as the main source for the r-process nuclei near mass number A=126.Comment: 14 pages, AASTeX, submitted to the Astrophysical Journa
    corecore