1,200 research outputs found

    Effect of Substrate Support on Dynamic Graphene/Metal Electrical Contacts.

    Get PDF
    Recent advances in graphene and other two-dimensional (2D) material synthesis and characterization have led to their use in emerging technologies, including flexible electronics. However, a major challenge is electrical contact stability, especially under mechanical straining or dynamic loading, which can be important for 2D material use in microelectromechanical systems. In this letter, we investigate the stability of dynamic electrical contacts at a graphene/metal interface using atomic force microscopy (AFM), under static conditions with variable normal loads and under sliding conditions with variable speeds. Our results demonstrate that contact resistance depends on the nature of the graphene support, specifically whether the graphene is free-standing or supported by a substrate, as well as on the contact load and sliding velocity. The results of the dynamic AFM experiments are corroborated by simulations, which show that the presence of a stiff substrate, increased load, and reduced sliding velocity lead to a more stable low-resistance contact

    Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments

    Get PDF
    Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10−10 to 10−4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials

    Survey on software tools that implement deep learning algorithms on intel/x86 and IBM/Power8/Power9 platforms

    Get PDF
    Neural networks are becoming more and more popular in scientific field and in the industry. It is mostly because new solutions using neural networks show state-of-the-art results in the domains previously occupied by traditional methods, eg. computer vision, speech recognition etc. But to get these results neural networks become progressively more complex, thus needing a lot more training. The training of neural networks today can take weeks. This problems can be solved by parallelization of the neural networks training and using modern clusters and supercomputers, which can significantly reduce the learning time. Today, a faster training for data scientist is essential, because it allows to get the results faster to make the next decision. In this paper we provide an overview of distributed learning provided by the popular modern deep learning frameworks, both in terms of provided functionality and performance. We consider multiple hardware choices: training on multiple GPUs and multiple computing nodes. © The Authors 2019.Council on grants of the President of the Russian Federation: MK-2330.2019.9You can use a special version of Caffe, NVCaffe, which is supported by NVidia. This version was created specifically for the use of several GPUs. User instructions can be found in [35].For NVidia, MXNet is supported by Nvidia Cloud. MXNet also has support for CUDA and CuDNN.The results described in this paper were obtained with the financial support of the grant from the Russian Federation President Fund (MK-2330.2019.9)

    Radial Strains of Double-layer Cylinders in Hydraulic Props of Powered Supports

    Get PDF
    At present a lot of efforts are made to use double-layer power cylinders in hydraulic props of powered supports. To study the response of these cylinders to loads a special finite-element model has been developed and used for investigations into tension effect and double-layer cylinder thickness – radial strain relation under pressure of hydraulic liquid 50 MPa. It has been revealed that double-layer cylinders are distinguished by much lower radial strains in the zone of cup-like sealing elements as if compared with one-layer cylinders, as well as equivalent stresses are lower, and safety factor is higher. The data of the study can be recommended to calculate appropriate geometrical parameters of hydraulic props with respect to lower radial strains of a hydraulic cylinder, which improve its leak-tightness and functioning of cup-like sealing elements. The obtained results can be useful for design and construction of powered supports

    Multifrequency dial sensing of the atmospheric gaseous constituents using the first and second harmonics of a tunable CO2 laser radiation

    Get PDF
    The results of field measurements of concentration of some gaseous components of the atmosphere along the paths, in Sofia, Bulgaria, using a gas analyzer based on the use of a CO2 laser radiation frequency-doubled with ZnGeP2 monocrystals are presented. The gas analyzer is a traditional long path absorption meter. Radiation from the tunable CO2 laser of low pressure and from an additional He-Ne laser is directed to a colliminating hundredfold Gregori telescope with a 300 mm diameter of the principal mirror. The dimensions of the mirrors of a retroreflector 500 x 500 mm and a receiving telescope allow one to totally intercept the beam passed through the atmospheric layer under study and back

    Photo-Sensitivity of Large Area Physical Vapor Deposited Mono and Bilayer MoS2

    Get PDF
    We present photosensitivity in large area physical vapour deposited mono and bi-layer MoS2 films. Photo-voltaic effect was observed in single layer MoS2 without any apparent rectifying junctions, making device fabrication straightforward. For bi-layers, no such effect was present, suggesting strong size effect in light-matter interaction. The photo-voltaic effect was observed to highly direction dependent in the film plane, which suggests that the oblique deposition configuration plays a key role in developing the rectifying potential gradient. To the best of our knowledge, this is the first report of any large area and transfer free MoS2 photo device with performance comparable to their exfoliated counterparts
    corecore