35 research outputs found

    Recurrent candidiasis and early-onset gastric cancer in a patient with a genetically defined partial MYD88 defect

    Get PDF
    Gastric cancer is caused by both genetic and environmental factors. A woman who suffered from recurrent candidiasis throughout her life developed diffuse-type gastric cancer at the age of 23 years. Using whole-exome sequencing we identified a germline homozygous missense variant in MYD88. Immunological assays on peripheral blood mononuclear cells revealed an impaired immune response upon stimulation with Candida albicans, characterized by a defective production of the cytokine interleukin-17. Our data suggest that a genetic defect in MYD88 results in an impaired immune response and may increase gastric cancer risk

    Meningococcal C specific immune responses: immunity in an era of immunization with vaccine

    No full text
    Meningococcal serogroup C conjugate immunization was introduced in the Dutch national immunization schedule at the age of 14 months, together with a large catch-up campaign in 2002. After introduction of this MenC immunization, the incidence of MenC completely disappeared from the immunized population and a large reduction of disease was observed in the non-immunized population. Little information was present on the longevity of immunity following a single MenC immunization. In this PhD thesis the immunity of the Dutch population was assessed before and after introduction of the vaccine. The study reveals that a single immunization is beneficial over naturally induced immunity against MenC and reveals that the persistence of MenC-specific antibodies gradually increases in relation with the age at the time of immunization. Therefore, the main success of the MenC immunization programme is mainly due to the large herd effect that was introduced after the mass catch-up campaign. However, children that receive a single MenC immunization at the age of 14 months may be at risk when they enter the adolescent age and therefore an additional immunization may be necessary. Furthermore, studies on the transfer of maternal antibodies from mother to neonate were performed and the kinetics of antibody responses following primary or secondary MenC conjugate vaccination were studied

    Spindle-assembly checkpoint and gastrointestinal cancer

    No full text
    Item does not contain fulltex

    Candidate Gene Discovery in Hereditary Colorectal Cancer and Polyposis Syndromes-Considerations for Future Studies

    No full text
    To discover novel high-penetrant risk loci for hereditary colorectal cancer (hCRC) and polyposis syndromes many whole-exome and whole-genome sequencing (WES/WGS) studies have been performed. Remarkably, these studies resulted in only a few novel high-penetrant risk genes. Given this observation, the possibility and strategy to identify high-penetrant risk genes for hCRC and polyposis needs reconsideration. Therefore, we reviewed the study design of WES/WGS-based hCRC and polyposis gene discovery studies (n = 37) and provide recommendations to optimize discovery and validation strategies. The group of genetically unresolved patients is phenotypically heterogeneous, and likely composed of distinct molecular subtypes. This knowledge advocates for the screening of a homogeneous, stringently preselected discovery cohort and obtaining multi-level evidence for variant pathogenicity. This evidence can be collected by characterizing the molecular landscape of tumors from individuals with the same affected gene or by functional validation in cell-based models. Together, the combined approach of a phenotype-driven, tumor-based candidate gene search might elucidate the potential contribution of novel genetic predispositions in genetically unresolved hCRC and polyposis

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    No full text
    Contains fulltext : 165806.pdf (Publisher’s version ) (Open Access)BACKGROUND: Colorectal cancer (CRC) is a cumulative term applied to a clinically and genetically heterogeneous group of neoplasms that occur in the bowel. Based on twin studies, up to 45 % of the CRC cases may involve a heritable component. Yet, only in 5-10 % of these cases high-penetrant germline mutations are found (e.g. mutations in APC and DNA mismatch repair genes) that result in a familial aggregation and/or an early onset of the disease. Genome-wide association studies have revealed that another ~5 % of the CRC cases may be explained by a cumulative effect of low-penetrant risk factors. Recent attempts to identify novel genetic factors using whole exome and whole genome sequencing has proven to be difficult since the remaining, yet to be discovered, high penetrant CRC predisposing genes appear to be rare. In addition, most of the moderately penetrant candidate genes identified so far have not been confirmed in independent cohorts. Based on literature examples, we here discuss how careful patient and cohort selection, candidate gene and variant selection, and corroborative evidence may be employed to facilitate the discovery of novel CRC predisposing genes. CONCLUSIONS: The picture emerges that the genetic predisposition to CRC is heterogeneous, involving complex interplays between common and rare (inter)genic variants with different penetrances. It is anticipated, however, that the use of large clinically well-defined patient and control datasets, together with improved functional and technical possibilities, will yield enough power to unravel this complex interplay and to generate accurate individualized estimates for the risk to develop CRC

    Somatic mutational signatures in polyposis and colorectal cancer

    No full text
    Contains fulltext : 215529.pdf (publisher's version ) (Open Access)The somatic mutation spectrum imprinted in the genome of a tumor represents the mutational processes that have been active in that tumor. Large sequencing efforts in various cancer types have resulted in the identification of multiple mutational signatures, of which several have been linked to specific biological mechanisms. Several pan-cancer mutational signatures have been identified, while other signatures are only found in specific tissue types. Research on tumors from individuals with specific DNA repair defects has led to links between specific mutational signatures and mutational processes. Studying mutational signatures in cancers that are likely the result of a genetic predisposition may represent an interesting strategy to identify constitutional DNA repair defects, including those underlying polyposis and colorectal cancer

    Somatic Nonepigenetic Mismatch Repair Gene Aberrations Underly Most Mismatch Repair-Deficient Lynch-Like Tumors

    No full text
    Contains fulltext : 231707.pdf (Publisher’s version ) (Open Access

    NTHL1 and MUTYH polyposis syndromes: two sides of the same coin?

    No full text
    It is now well established that germline genomic aberrations can underlie high-penetrant familial polyposis and colorectal cancer syndromes, but a genetic cause has not yet been found for the major proportion of patients with polyposis. Since next-generation sequencing has become widely accessible, several novel, but rare, high-penetrant risk factors for adenomatous polyposis have been identified, all operating in pathways responsible for genomic maintenance and DNA repair. One of these is the base excision repair pathway. In addition to the well-established role of the DNA glycosylase gene MUTYH, biallelic mutations in which predispose to MUTYH-associated polyposis, a second DNA glycosylase gene, NTHL1, has recently been associated with adenomatous polyposis and a high colorectal cancer risk. Both recessive polyposis syndromes are associated with increased risks for several other cancer types as well, but the spectrum of benign and malignant tumours in individuals with biallelic NTHL1 mutations was shown to be broader; hence the name NTHL1-associated tumour syndrome. Colorectal tumours encountered in patients with these syndromes show unique, clearly distinct mutational signatures that may facilitate the identification of these syndromes. On the basis of the prevalence of pathogenic MUTYH and NTHL1 variants in the normal population, we estimate that the frequency of the novel NTHL1-associated tumour syndrome is five times lower than that of MUTYH-associated polyposis. Copyright (c) 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore