8 research outputs found

    A 16 Parts per Trillion Comparison of the Antiproton-to-Proton q/m Ratios

    Full text link
    The Standard Model (SM) of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning-trap systems. For instance, we compared the proton/antiproton magnetic moments with 1.5 ppb fractional precision, which improved upon previous best measurements by a factor of >3000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16ppt. Our result is based on the combination of four independent long term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental setups incorporating different systematic effects. The final result, −(q/m)p/(q/m)pˉ-(q/m)_{\mathrm{p}}/(q/m)_{\bar{\mathrm{p}}} = 1.000 000 000 003(16)1.000\,000\,000\,003 (16), is consistent with the fundamental charge-parity-time (CPT) reversal invariance, and improves the precision of our previous best measurement by a factor of 4.3. The measurement tests the SM at an energy scale of 1.96⋅10−27 1.96\cdot10^{-27}\,GeV (C..L.. 0.68), and improves 10 coefficients of the Standard Model Extension (SME). Our cyclotron-clock-study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc_\text{cc}) for antimatter to a level of ∣αg−1∣<1.8⋅10−7|\alpha_{g}-1| < 1.8 \cdot 10^{-7}, and enables the first differential test of the WEPcc_\text{cc} using antiprotons \cite{hughes1991constraints}. From this interpretation we constrain the differential WEPcc_\text{cc}-violating coefficient to ∣αg,D−1∣<0.030|\alpha_{g,D}-1|<0.030

    Untersuchung ueber die Auswirkungen von Selective Availability auf die Satellitensignale des GPS und auf geodaetische Anwendungen

    No full text
    SIGLEAvailable from TIB Hannover: FR 5742 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Die Nutzung von GPS fuer die Deformationsanalyse in regionalen Netzen am Beispiel Islands

    No full text
    Available from TIB Hannover: ZS 299a(237) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Il progetto ALPS-GPSQuakenet

    No full text
    In the higher part of many Italian alpine regions the population is rapidly decreasing. This fact directly influences landscape and forest management criteria. In particular, large pastures and agricultured areas are being covered by trees or bushes, which change the landscape. This is a well known trend but it is very difficult to evaluate the extension and the evolution of these phenomena. A new approach to this problem has been developed at the Laboratorio Ambiente e Territorio, which makes possible to determine changes of the forested areas over time. Series of aerial photographs taken in different years (1954, 1980, 1994) have been compared using automatic algorithms which exploit the GRASS GIS (Grass GIS is a public domain Geographic Information System) image analysis capability. This method has proved to be effective for the automatic determination of the widening of the forested areas. A precise knowledge of the forest coverage evolution is very precious to enhance forest and landscape management criteria. It can also be combined with demographic information to better explain landscape change. Further investigations have been carried out to provide a photgrammetric tecnique for the determination of the growing stock. Such tecnique has already been set up in the \u201950 and in the \u201960 using ad hoc photogrammetric surveys with mean scale of 1:10.000 and 1:20.000 for flat areas and plantations. In this work an effort has been made to apply these technique to sparse forests of spruce and larch in mountain areas using panchromatic images with mean scale 1:40.000. Measurements on the images of the single trees have been checked against the data from forest management plans for the Trentino region

    A 16 Parts per Trillion Comparison of the Antiproton-to-Proton q/m Ratios

    No full text
    The Standard Model (SM) of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning-trap systems. For instance, we compared the proton/antiproton magnetic moments with 1.5 ppb fractional precision, which improved upon previous best measurements by a factor of >3000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16ppt. Our result is based on the combination of four independent long term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental setups incorporating different systematic effects. The final result, −(q/m)p/(q/m)pˉ-(q/m)_{\mathrm{p}}/(q/m)_{\bar{\mathrm{p}}} = 1.000 000 000 003(16)1.000\,000\,000\,003 (16), is consistent with the fundamental charge-parity-time (CPT) reversal invariance, and improves the precision of our previous best measurement by a factor of 4.3. The measurement tests the SM at an energy scale of 1.96⋅10−27 1.96\cdot10^{-27}\,GeV (C..L.. 0.68), and improves 10 coefficients of the Standard Model Extension (SME). Our cyclotron-clock-study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc_\text{cc}) for antimatter to a level of ∣αg−1∣<1.8⋅10−7|\alpha_{g}-1| < 1.8 \cdot 10^{-7}, and enables the first differential test of the WEPcc_\text{cc} using antiprotons \cite{hughes1991constraints}. From this interpretation we constrain the differential WEPcc_\text{cc}-violating coefficient to ∣αg,D−1∣<0.030|\alpha_{g,D}-1|<0.030

    A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio

    No full text
    The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision, which improved upon previous best measurements by a factor of greater than 3,000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts per trillion. Our result is based on the combination of four independent long-term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental set-ups incorporating different systematic effects. The final result, −(q/m)p/(q/m) )-p=1.000000000003(16), is consistent with the fundamental charge–parity–time reversal invariance, and improves the precision of our previous best measurement by a factor of 4.3. The measurement tests the standard model at an energy scale of 1.96 × 10−27 gigaelectronvolts (confidence level 0.68), and improves ten coefficients of the standard model extension. Our cyclotron clock study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc) for antimatter to less than 1.8 × 10−7, and enables the first differential test of the WEPcc using antiprotons. From this interpretation we constrain the differential WEPcc-violating coefficient to less than 0.030
    corecore