440 research outputs found

    An approach to transcriptome analysis of non-model organisms using short-read sequences

    Get PDF

    Early and individualized goal-directed therapy for trauma-induced coagulopathy

    Get PDF
    Severe trauma-related bleeding is associated with high mortality. Standard coagulation tests provide limited information on the underlying coagulation disorder. Whole-blood viscoelastic tests such as rotational thromboelastometry or thrombelastography offer a more comprehensive insight into the coagulation process in trauma. The results are available within minutes and they provide information about the initiation of coagulation, the speed of clot formation, and the quality and stability of the clot. Viscoelastic tests have the potential to guide coagulation therapy according to the actual needs of each patient, reducing the risks of over- or under-transfusion. The concept of early, individualized and goal-directed therapy is explored in this review and the AUVA Trauma Hospital algorithm for managing trauma-induced coagulopathy is presented

    De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus)

    Get PDF
    BACKGROUND: The tuatara (Sphenodon punctatus) is a species of extraordinary zoological interest, being the only surviving member of an entire order of reptiles which diverged early in amniote evolution. In addition to their unique phylogenetic placement, many aspects of tuatara biology, including temperature-dependent sex determination, cold adaptation and extreme longevity have the potential to inform studies of genome evolution and development. Despite increasing interest in the tuatara genome, genomic resources for the species are still very limited. We aimed to address this by assembling a transcriptome for tuatara from an early-stage embryo, which will provide a resource for genome annotation, molecular marker development and studies of development and adaptation in tuatara. RESULTS: We obtained 30 million paired-end 50 bp reads from an Illumina Genome Analyzer and assembled them with Velvet and Oases using a range of kmers. After removing redundancy and filtering out low quality transcripts, our transcriptome dataset contained 32911 transcripts, with an N50 of 675 and a mean length of 451 bp. Almost 50% (15965) of these transcripts could be annotated by comparison with the NCBI non-redundant (NR) protein database or the chicken, green anole and zebrafish UniGene sets. A scan of candidate genes and repetitive elements revealed genes involved in immune function, sex differentiation and temperature-sensitivity, as well as over 200 microsatellite markers. CONCLUSIONS: This dataset represents a major increase in genomic resources for the tuatara, increasing the number of annotated gene sequences from just 60 to almost 16,000. This will facilitate future research in sex determination, genome evolution, local adaptation and population genetics of tuatara, as well as inform studies on amniote evolution

    Trions, Exciton Dynamics and Spectral Modifications in Doped Carbon Nanotubes: A Singular Defect-Driven Mechanism

    Full text link
    Doping substantially influences the electronic and photophysical properties of semiconducting single-wall carbon nanotubes (s-SWNTs). Although prior studies have noted that surplus charge carriers modify optical spectra and accelerate non-radiative exciton decay in doped s-SWNTs, a direct mechanistic correlation of trion formation, exciton dynamics and energetics remains elusive. This work examines the influence of doping-induced non-radiative decay and exciton confinement on s-SWNT photophysics. Using photoluminescence, continuous-wave absorption, and pump-probe spectroscopy, we show that localization of and barrier formation by trapped charges can be jointly quantified using diffusive exciton transport- and particle-in-the-box models, yielding a one-to-one correlation between charge carrier concentrations derived from these models. The study highlights the multifaceted role of exohedral counterions, which trap charges to create quenching sites, form barriers to exciton movement, and host trion states. This contributes significantly to understanding and optimizing the photophysical properties of doped SWNTs

    Postponing intubation in spontaneously breathing major trauma patients upon emergency room admission does not impair outcome

    Get PDF
    Background Pre-hospital emergency anaesthesia and tracheal intubation are life-saving interventions in trauma patients. However, there is evidence suggesting that the risks associated with both procedures outweigh the benefits. Thus, we assessed whether induction of anaesthesia and tracheal intubation of trauma patients can be postponed in spontaneously breathing patients until emergency room (ER) admission without increasing mortality. Methods Retrospective analysis of major trauma patients either intubated on-scene by an emergency medical service (EMS) physician (pre-hospital intubation, PHI) or within the first 10 min after admission at a level 1 trauma centre (emergency room intubation, ERI). Data was extracted from the German Trauma Registry, hospital patient data management and electronic clinical information system. Results From a total of 946 major trauma cases documented between 2010 and 2017, 294 patients matched the study inclusion criteria. Mortality rate of PHI (N = 258) vs. ERI (N = 36) patients was 26.4% vs. 16.7% (p = 0.3). After exclusion of patients with severe traumatic brain injury and/or pre-hospital cardiac arrest, mortality rate of PHI (N = 100) vs. ERI patients (N = 29) was 6% vs. 17.2%, (p = 0.07). Median on-scene time was significantly (p < 0.01) longer in PHI (30 min; IQR: 21–40) vs. ERI patients (20 min; IQR: 15–28). Conclusions There was no statistical difference in mortality rates of spontaneously breathing trauma patients intubated on-scene when compared with patients intubated immediately after hospital admission. Due to the retrospective study design and small case number, further studies evaluating the impact of airway management timing in sufficiently breathing trauma patients are warranted.publishedVersio

    Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptome analysis is increasingly being used to study the evolutionary origins and ecology of non-model plants. One issue for both transcriptome assembly and differential gene expression analyses is the common occurrence in plants of hybridisation and whole genome duplication (WGD) and hybridization resulting in allopolyploidy. The divergence of duplicated genes following WGD creates near identical homeologues that can be problematic for <it>de novo </it>assembly and also reference based assembly protocols that use short reads (35 - 100 bp).</p> <p>Results</p> <p>Here we report a successful strategy for the assembly of two transcriptomes made using 75 bp Illumina reads from <it>Pachycladon fastigiatum </it>and <it>Pachycladon cheesemanii</it>. Both are allopolyploid plant species (2n = 20) that originated in the New Zealand Alps about 0.8 million years ago. In a systematic analysis of 19 different coverage cutoffs and 20 different k-mer sizes we showed that i) none of the genes could be assembled across all of the parameter space ii) assembly of each gene required an optimal set of parameter values and iii) these parameter values could be explained in part by different gene expression levels and different degrees of similarity between genes.</p> <p>Conclusions</p> <p>To obtain optimal transcriptome assemblies for allopolyploid plants, k-mer size and k-mer coverage need to be considered simultaneously across a broad parameter space. This is important for assembling a maximum number of full length ESTs and for avoiding chimeric assemblies of homeologous and paralogous gene copies.</p
    • …
    corecore