22 research outputs found

    Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways

    Get PDF
    Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.This work is funded by grants from the Wellcome Trust (101050/Z/13/Z) and the MRC (MR/K011022/1) and supported by the Gurdon Institute core grant from Cancer Research UK (C6946/A14492) and the Wellcome Trust (092096/Z/10/Z). This research was supported in part by the Intramural Research Program of NIAMS at the NIH (1Z01AR041126-17). M.V. was supported by a Svenska Sällskapet för Medicinsk Forskning (SSMF) postdoctoral fellowship. S.W. was supported in part by fellowships from the Gates Cambridge Trust and NIH-Cambridge MD/PhD Program (T32GM007367). M.O. was supported by a postdoctoral fellowship from the Japan Society for the Promotion of Science (JSPS). K.M. is supported by Human Frontier Science Program (RGP0021/2016), JSPS KAKENHI grants JP16H01321 and JP16H01222, and by a Grant for Basic Science Research Projects from The Sumitomo Foundation (150810). V.P. was supported by the Wellcome Trust (081277), the Wallonia-Brussels International Excellence Grant, The Research Foundation – Flanders (FWO) (Odysseus Return Grant G0F7716N), the KU Leuven Research Fund (BOFZAP starting grant StG/15/021BF, C1 grant C14/16/077, and project financing)

    Diverse Effects on Mitochondrial and Nuclear Functions Elicited by Drugs and Genetic Knockdowns in Bloodstream Stage Trypanosoma brucei

    Get PDF
    The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy

    Bioluminescent Imaging of Trypanosoma brucei Shows Preferential Testis Dissemination Which May Hamper Drug Efficacy in Sleeping Sickness

    Get PDF
    Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs

    Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation

    Get PDF
    Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) and its derivatives exhibit specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. We found that compound 1 would target the parasite adenosine kinase (TbrAK), an important enzyme of the purine salvage pathway, by acting via hyperactivation of the enzyme. This represents a novel and hitherto unexplored strategy for the development of trypanocides. These findings prompted us to investigate the mechanism of action at the molecular level. The present study reports the first three-dimensional crystal structures of TbrAK in complex with the bisubstrate inhibitor AP5A, and in complex with the activator (compound 1). The subsequent structural analysis sheds light on substrate and activator binding, and gives insight into the possible mechanism leading to hyperactivation. Further structure-activity relationships in terms of TbrAK activation properties support the observed binding mode of compound 1 in the crystal structure and may open the field for subsequent optimization of this compound series

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Structure–activity relationships of synthetic cordycepin analogues as experimental therapeutics for African trypanosomiasis

    No full text
    Novel methods for treatment of African trypanosomiasis, caused by infection with Trypanosoma brucei are needed. Cordycepin (3′-deoxyadenosine, 1a) is a powerful trypanocidal compound in vitro but is ineffective in vivo because of rapid metabolic degradation by adenosine deaminase (ADA). We elucidated the structural moieties of cordycepin required for trypanocidal activity and designed analogues that retained trypanotoxicity while gaining resistance to ADA-mediated metabolism. 2-Fluorocordycepin (2-fluoro-3′-deoxyadenosine, 1b) was identified as a selective, potent, and ADA-resistant trypanocidal compound that cured T. brucei infection in mice. Compound 1b is transported through the high affinity TbAT1/P2 adenosine transporter and is a substrate of T. b. brucei adenosine kinase. 1b has good preclinical properties suitable for an oral drug, albeit a relatively short plasma half-life. We present a rapid and efficient synthesis of 2-halogenated cordycepins, also useful synthons for the development of additional novel C2-substituted 3′-deoxyadenosine analogues to be evaluated in development of experimental therapeutics
    corecore