256 research outputs found

    Modulation of Cell Adhesion and Migration by the Histone Methyltransferase Subunit mDpy-30 and Its Interacting Proteins

    Get PDF
    We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT) complex, also localizes at the trans-Golgi network (TGN), where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF) BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of β1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of β1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to β1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as β1 integrin

    The Role of Host Traits, Season and Group Size on Parasite Burdens in a Cooperative Mammal

    Get PDF
    The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted

    Identifying Where REDD+ Financially Out Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach

    Get PDF
    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional finescale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD + could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US 3MgCO2e)wouldenableREDD+tooutcompeteoilpalmin553 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US 27 million to secure these areas for 25 years. Higher carbon offset price (US 30MgCO2e)wouldincreasethecompetitivenessofREDD+withinthelandscapebutwouldstillonlycapturebetween6930 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US 380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds

    Sensory Experience Differentially Modulates the mRNA Expression of the Polysialyltransferases ST8SiaII and ST8SiaIV in Postnatal Mouse Visual Cortex

    Get PDF
    Polysialic acid (PSA) is a unique carbohydrate composed of a linear homopolymer of α-2,8 linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) in vertebrate neural system. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII (also known as STX) and ST8SiaIV (also known as PST). By modulating adhesive property of NCAM, PSA plays a critical role in several neural development processes such as cell migration, neurite outgrowth, axon pathfinding, synaptogenesis and activity-dependent plasticity. The expression of PSA is temporally and spatially regulated during neural development and a tight regulation of PSA expression is essential to its biological function. In mouse visual cortex, PSA is downregulated following eye opening and its decrease allows the maturation of GABAergic synapses and the opening of the critical period for ocular dominance plasticity. Relatively little is known about how PSA levels are regulated by sensory experience and neuronal activity. Here, we demonstrate that while both ST8SiaII and ST8SiaIV mRNA levels decrease around the time of eye opening in mouse visual cortex, only ST8SiaII mRNA level reduction is regulated by sensory experience. Using an organotypic culture system from mouse visual cortex, we further show that ST8SiaII gene expression is regulated by spiking activity and NMDA-mediated excitation. Further, we show that both ST8SiaII and ST8SiaIV mRNA levels are positively regulated by PKC-mediated signaling. Therefore, sensory experience-dependent ST8SiaII gene expression regulates PSA levels in postnatal visual cortex, thus acting as molecular link between visual activity and PSA expression

    Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain

    Get PDF
    Neuropathic pain resulting from nerve lesions or dysfunction represents one of the most challenging neurological diseases to treat. A better understanding of the molecular mechanisms responsible for causing these maladaptive responses can help develop novel therapeutic strategies and biomarkers for neuropathic pain. We performed a miRNA expression profiling study of dorsal root ganglion (DRG) tissue from rats four weeks post spinal nerve ligation (SNL), a model of neuropathic pain. TaqMan low density arrays identified 63 miRNAs whose level of expression was significantly altered following SNL surgery. Of these, 59 were downregulated and the ipsilateral L4 DRG, not the injured L5 DRG, showed the most significant downregulation suggesting that miRNA changes in the uninjured afferents may underlie the development and maintenance of neuropathic pain. TargetScan was used to predict mRNA targets for these miRNAs and it was found that the transcripts with multiple predicted target sites belong to neurologically important pathways. By employing different bioinformatic approaches we identified neurite remodeling as a significantly regulated biological pathway, and some of these predictions were confirmed by siRNA knockdown for genes that regulate neurite growth in differentiated Neuro2A cells. In vitro validation for predicted target sites in the 3′-UTR of voltage-gated sodium channel Scn11a, alpha 2/delta1 subunit of voltage-dependent Ca-channel, and purinergic receptor P2rx ligand-gated ion channel 4 using luciferase reporter assays showed that identified miRNAs modulated gene expression significantly. Our results suggest the potential for miRNAs to play a direct role in neuropathic pain

    Monoculture of Leafcutter Ant Gardens

    Get PDF
    Background -- Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings -- Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance -- Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.The research was supported by National Science Foundation awards DEB-0920138, DEB-0639879, and DEB-0110073 to UGM; DEB-0949689 to T.R. Schultz, N. Mehdiabadi, and UGM; and a Fellowship (02/05) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico to AR. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analyses of N-acetylcysteine (NAC) for preventing contrast-induced nephrotoxicity (CIN) have led to disparate conclusions. Here we examine and attempt to resolve the heterogeneity evident among these trials.</p> <p>Methods</p> <p>Two reviewers independently extracted and graded the data. Limiting studies to randomized, controlled trials with adequate outcome data yielded 22 reports with 2746 patients.</p> <p>Results</p> <p>Significant heterogeneity was detected among these trials (<it>I</it><sup>2 </sup>= 37%; <it>p </it>= 0.04). Meta-regression analysis failed to identify significant sources of heterogeneity. A modified L'Abbé plot that substituted groupwise changes in serum creatinine for nephrotoxicity rates, followed by model-based, unsupervised clustering resolved trials into two distinct, significantly different (<it>p </it>< 0.0001) and homogeneous populations (<it>I</it><sup>2 </sup>= 0 and <it>p </it>> 0.5, for both). Cluster 1 studies (<it>n </it>= 18; 2445 patients) showed no benefit (relative risk (RR) = 0.87; 95% confidence interval (CI) 0.68–1.12, <it>p </it>= 0.28), while cluster 2 studies (<it>n </it>= 4; 301 patients) indicated that NAC was highly beneficial (RR = 0.15; 95% CI 0.07–0.33, <it>p </it>< 0.0001). Benefit in cluster 2 was unexpectedly associated with NAC-induced decreases in creatinine from baseline (<it>p </it>= 0.07). Cluster 2 studies were relatively early, small and of lower quality compared with cluster 1 studies (<it>p </it>= 0.01 for the three factors combined). Dialysis use across all studies (five control, eight treatment; <it>p </it>= 0.42) did not suggest that NAC is beneficial.</p> <p>Conclusion</p> <p>This meta-analysis does not support the efficacy of NAC to prevent CIN.</p

    Emerging Roles of PAR-1 and PAFR in Melanoma Metastasis

    Get PDF
    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1 and PAFR, contribute to the acquisition of the metastatic phenotype of melanoma is presented and discussed

    Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Get PDF
    BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of \u3b3-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL
    corecore