440 research outputs found
Onsager-Machlup action-based path sampling and its combination with replica exchange for diffusive and multiple pathways
For sampling multiple pathways in a rugged energy landscape, we propose a
novel action-based path sampling method using the Onsager-Machlup action
functional. Inspired by the Fourier-path integral simulation of a quantum
mechanical system, a path in Cartesian space is transformed into that in
Fourier space, and an overdamped Langevin equation is derived for the Fourier
components to achieve a canonical ensemble of the path at a finite temperature.
To avoid "path trapping" around an initially guessed path, the path sampling
method is further combined with a powerful sampling technique, the replica
exchange method. The principle and algorithm of our method is numerically
demonstrated for a model two-dimensional system with a bifurcated potential
landscape. The results are compared with those of conventional transition path
sampling and the equilibrium theory, and the error due to path discretization
is also discussed.Comment: 20 pages, 5 figures, submitted to J. Chem. Phy
Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus
The order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales. They infect plants and use specialized proteins or protein domains to move through their host. In phylogenetic analysis based on their replication proteins, these viruses form a separate distinct lineage within the picornavirales branch. To recognize these common properties at the taxonomic level, we propose to create a new family termed “Secoviridae” to include the genera Comovirus, Fabavirus, Nepovirus, Cheravirus, Sadwavirus, Sequivirus and Waikavirus. Two newly discovered plant viruses share common properties with members of the proposed family Secoviridae but have distinct specific genomic organizations. In phylogenetic reconstructions, they form a separate sub-branch within the Secoviridae lineage. We propose to create a new genus termed Torradovirus (type species, Tomato torrado virus) and to assign this genus to the proposed family Secoviridae
Force balance in canonical ensembles of static granular packings
We investigate the role of local force balance in the transition from a
microcanonical ensemble of static granular packings, characterized by an
invariant stress, to a canonical ensemble. Packings in two dimensions admit a
reciprocal tiling, and a collective effect of force balance is that the area of
this tiling is also invariant in a microcanonical ensemble. We present
analytical relations between stress, tiling area and tiling area fluctuations,
and show that a canonical ensemble can be characterized by an intensive
thermodynamic parameter conjugate to one or the other. We test the equivalence
of different ensembles through the first canonical simulations of the force
network ensemble, a model system.Comment: 9 pages, 9 figures, submitted to JSTA
The tail of the contact force distribution in static granular materials
We numerically study the distribution P(f) of contact forces in frictionless
bead packs, by averaging over the ensemble of all possible force network
configurations. We resort to umbrella sampling to resolve the asymptotic decay
of P(f) for large f, and determine P(f) down to values of order 10^{-45} for
ordered and disordered systems in two and three dimensions. Our findings
unambiguously show that, in the ensemble approach, the force distributions
decay much faster than exponentially: P(f) ~ exp(-f^{\alpha}), with alpha
\approx 2.0 for 2D systems, and alpha \approx 1.7 for 3D systems.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Single Chain Force Spectroscopy: Sequence Dependence
We study the elastic properties of a single A/B copolymer chain with a
specific sequence. We predict a rich structure in the force extension relations
which can be addressed to the sequence. The variational method is introduced to
probe local minima on the path of stretching and releasing. At given force, we
find multiple configurations which are separated by energy barriers. A
collapsed globular configuration consists of several domains which unravel
cooperatively. Upon stretching, unfolding path shows stepwise pattern
corresponding to the unfolding of each domain. While releasing, several cores
can be created simultaneously in the middle of the chain resulting in a
different path of collapse.Comment: 6 pages 3 figure
- …