14 research outputs found

    Rosuvastatin use reduces thrombin generation potential in patients with venous thromboembolism: a randomized controlled trial

    Get PDF
    Background Statin therapy could form an alternative prophylactic treatment for venous thromboembolism (VTE) if statins are proven to downregulate hemostasis and prevent recurrent VTE, without increasing bleeding risk. Objectives The STAtins Reduce Thrombophilia (START) trial investigated whether statin affects coagulation in patients with prior VTE. Patients/methods After anticoagulation withdrawal, patients were randomized to rosuvastatin 20 mg day−1 for 4 weeks or no intervention. Plasma samples taken at baseline and at the end of the study were analyzed employing thrombin generation assay. Results and conclusions The study comprised 126 rosuvastatin users and 119 non‐users. Mean age was 58 years, 61% were men, 49% had unprovoked VTE and 75% had cardiovascular (CV) risk factors. Endogenous thrombin potential (ETP) increased from baseline to end of study in non‐statin users (mean 97.22 nm*min; 95% CI, 40.92–153.53) and decreased in rosuvastatin users (mean −24.94 nm*min; 95% CI, −71.81 to 21.93). The mean difference in ETP change between treatments was −120.24 nm*min (95% CI, −192.97 to −47.51), yielding a 10.4% ETP reduction by rosuvastatin. The thrombin peak increased in both non‐statin (mean 20.69 nm; 95% CI, 9.80–31.58) and rosuvastatin users (mean 8.41 nm; 95% CI −0.86 to 17.69). The mean difference in peak change between treatments was −11.88 nm (95% CI, −26.11 to 2.35), yielding a 5% peak reduction by rosuvastatin. Other thrombin generation parameters did not change substantially. The reduction in ETP and peak by rosuvastatin was more pronounced in the subgroups of participants with CV risk factors and with unprovoked VTE. We conclude that rosuvastatin reduces thrombin generation potential in patients who had VTE

    Genome-wide association trans-ethnic meta-analyses identifies novel associations regulating coagulation Factor VIII and von Willebrand Factor plasma levels

    Get PDF
    BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Protein Z and protein Z-dependent protease inhibitor - Determinants of levels and risk of venous thrombosis

    Get PDF
    To assess the potential roles of protein Z (PZ) and protein Z-dependent protease inhibitor (ZPI) in venous thrombosis, their plasma levels were measured in 426 individuals with venous thrombosis and 471 control individuals participating in the Leiden Thrombophilia Study. A relationship between the level of PZ or ZPI and venous thrombosis was not detected in the overall case-control study. PZ and ZPI circulate as a complex and their plasma levels are interdependent. Both PZ and ZPI are increased with oral contraceptive use and reduced with oral anticoagulant therapy

    Nutrition as a key factor for Cephalopod Aquaculture

    No full text
    Cephalopods are fast-growing animals, active swimmers and top predators, which require substantial amounts of food. As such, they show high metabolic rates dependent on a carnivorous diet, thus hypothetically linked to a predominant amino acid metabolism. Their body composition is mainly constituted by high levels of total protein, and their lipids, although quantitatively low, reveal the presence of substantial amounts of long-chain polyunsaturated fatty acids. All in all, little is known about their nutritional requirements, especially during the early stages, very prone to high mortalities under culture. This chapter is a brief account of key information concerning relevant points linked to the nutritional requirements that cephalopods have for proteins, lipids, carotenoids, carbohydrates, minerals and vitamins. Moreover, some considerations on populational metabolism are also presented.Peer reviewe
    corecore