3 research outputs found

    Cell Wall Diversity in Forage Maize : Genetic Complexity and Bioenergy Potential

    No full text
    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage maize doubled haploid (DH) population, we indicate the substantial degree of highly heritable (h2 > ~65 %) diversity in cell wall composition and bioconversion potential available within this important agronomic species. In addition to variation in lignin content, extensive genotypic diversity was found for the concentration and composition of hemicelluloses, the latter found to exert an influence on the recalcitrance of maize cell walls. Our results also demonstrate that forage maize harbors considerable variation for the release of cell wall glucose following pretreatment and enzymatic saccharification. In fact, the extent of variability observed for bioconversion efficiency (nearly 30 % between population extremes) greatly exceeded ranges reported in previous studies. In our population, a total of 52 quantitative trait loci (QTL) were detected for biomass compositional and bioconversion characters across 8 chromosomes. Noteworthy, from eight QTL related to bioconversion properties, five were previously unidentified and warrant further investigation. Ultimately, our results substantiate forage maize germplasm as a valid genetic resource for advancing cell wall degradability traits in bioenergy maize-breeding programs. However, since useful variation for cell wall traits is defined by QTL with “minor” effects (R2 = ~10 %), cultivar development for bio-based applications will rely on advanced marker-assisted selection procedures centered on detecting and increasing the frequency of favorable QTL alleles in elite flint and dent germplasm

    Hemostatic efficacy of pathogen-inactivated vs untreated platelets: a randomized controlled trial

    No full text
    Pathogen inactivation of platelet concentrates reduces the risk for blood-borne infections. However, its effect on platelet function and hemostatic efficacy of transfusion is unclear. We conducted a randomized noninferiority trial comparing the efficacy of pathogen-inactivated platelets using riboflavin and UV B illumination technology (intervention) compared with standard plasma-stored platelets (control) for the prevention of bleeding in patients with hematologic malignancies and thrombocytopenia. The primary outcome parameter was the proportion of transfusion-treatment periods in which the patient had grade 2 or higher bleeding, as defined by World Health Organization criteria. Between November 2010 and April 2016, 469 unique patients were randomized to 567 transfusion-treatment periods (283 in the control arm, 284 in the intervention arm). There was a 3% absolute difference in grade 2 or higher bleeding in the intention-to-treat analysis: 51% of the transfusion-treatment periods in the control arm and 54% in the intervention arm (95% confidence interval [CI], -6 to 11; P=.012 for noninferiority). However, in the per-protocol analysis, the difference in grade 2 or higher bleeding was 8%: 44% in the control arm and 52% in the intervention arm (95% CI22 to 18; P=.19 for noninferiority). Transfusion increment parameters were similar to 50% lower in the intervention arm. There was no difference in the proportion of patients developing HLA class I alloantibodies. In conclusion, the noninferiority criterion for pathogen-inactivated platelets was met in the intention-to-treat analysis. This finding was not demonstrated in the per-protocol analysis. This trial was registered at The Netherlands National Trial Registry as # NTR2106 and at www. clinicaltrials. gov as # NCT02783313
    corecore