181 research outputs found

    Spectral Sequence Motif Discovery

    Full text link
    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, motif finding algorithms of increasingly high performance are required to process the big datasets produced by new high-throughput sequencing technologies. Most existing algorithms are computationally demanding and often cannot support the large size of new experimental data. We present a new motif discovery algorithm that is built on a recent machine learning technique, referred to as Method of Moments. Based on spectral decompositions, this method is robust under model misspecification and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. In a few minutes, we can process datasets of hundreds of thousand sequences and extract motif profiles that match those computed by various state-of-the-art algorithms.Comment: 20 pages, 3 figures, 1 tabl

    Stochastic Control via Entropy Compression

    Get PDF
    We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.Comment: 18 page

    Border Carbon Adjustments and Leakage in the Presence of Public Pollution Abatement Activities

    Get PDF
    We graciously acknowledge the constructive comments and suggestions by the handling Editors C. Fischer and A. Munro as well as C. Montagna and P. Hatzipanayotou and three anonymous reviewers of the Journal. The authors are responsible for remaining errors and omissions.Peer reviewe

    A Carbon Leakage Mitigation Reform Strategy : The Role of Border Carbon Adjustments

    Get PDF
    Acknowledgements We graciously acknowledge the constructive comments and suggestions by Catia Montagna and Panos Hatzipanayotou. The authors are responsible for remaining errors and omissions

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    Pareto Improving Reforms in the Presence of Spillovers and Spillbacks

    Get PDF
    Available at SSRN: https://ssrn.com/abstract=4622201 or http://dx.doi.org/10.2139/ssrn.462220

    On the Computational Complexity of Stochastic Controller Optimization in POMDPs

    Get PDF
    We show that the problem of finding an optimal stochastic 'blind' controller in a Markov decision process is an NP-hard problem. The corresponding decision problem is NP-hard, in PSPACE, and SQRT-SUM-hard, hence placing it in NP would imply breakthroughs in long-standing open problems in computer science. Our result establishes that the more general problem of stochastic controller optimization in POMDPs is also NP-hard. Nonetheless, we outline a special case that is convex and admits efficient global solutions.Comment: Corrected error in the proof of Theorem 2, and revised Section
    corecore