181 research outputs found
Spectral Sequence Motif Discovery
Sequence discovery tools play a central role in several fields of
computational biology. In the framework of Transcription Factor binding
studies, motif finding algorithms of increasingly high performance are required
to process the big datasets produced by new high-throughput sequencing
technologies. Most existing algorithms are computationally demanding and often
cannot support the large size of new experimental data. We present a new motif
discovery algorithm that is built on a recent machine learning technique,
referred to as Method of Moments. Based on spectral decompositions, this method
is robust under model misspecification and is not prone to locally optimal
solutions. We obtain an algorithm that is extremely fast and designed for the
analysis of big sequencing data. In a few minutes, we can process datasets of
hundreds of thousand sequences and extract motif profiles that match those
computed by various state-of-the-art algorithms.Comment: 20 pages, 3 figures, 1 tabl
Stochastic Control via Entropy Compression
We consider an agent trying to bring a system to an acceptable state by
repeated probabilistic action. Several recent works on algorithmizations of the
Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for
the agent to succeed. Here we study whether such stochastic control is also
possible in a noisy environment, where both the process of state-observation
and the process of state-evolution are subject to adversarial perturbation
(noise). The introduction of noise causes the tools developed for LLL
algorithmization to break down since the key LLL ingredient, the sparsity of
the causality (dependence) relationship, no longer holds. To overcome this
challenge we develop a new analysis where entropy plays a central role, both to
measure the rate at which progress towards an acceptable state is made and the
rate at which noise undoes this progress. The end result is a sufficient
condition that allows a smooth tradeoff between the intensity of the noise and
the amenability of the system, recovering an asymmetric LLL condition in the
noiseless case.Comment: 18 page
Border Carbon Adjustments and Leakage in the Presence of Public Pollution Abatement Activities
We graciously acknowledge the constructive comments and suggestions by the handling Editors C. Fischer and A. Munro as well as C. Montagna and P. Hatzipanayotou and three anonymous reviewers of the Journal. The authors are responsible for remaining errors and omissions.Peer reviewe
A Carbon Leakage Mitigation Reform Strategy : The Role of Border Carbon Adjustments
Acknowledgements We graciously acknowledge the constructive comments and suggestions by Catia Montagna and Panos Hatzipanayotou. The authors are responsible for remaining errors and omissions
Conditions for duality between fluxes and concentrations in biochemical networks
Mathematical and computational modelling of biochemical networks is often
done in terms of either the concentrations of molecular species or the fluxes
of biochemical reactions. When is mathematical modelling from either
perspective equivalent to the other? Mathematical duality translates concepts,
theorems or mathematical structures into other concepts, theorems or
structures, in a one-to-one manner. We present a novel stoichiometric condition
that is necessary and sufficient for duality between unidirectional fluxes and
concentrations. Our numerical experiments, with computational models derived
from a range of genome-scale biochemical networks, suggest that this
flux-concentration duality is a pervasive property of biochemical networks. We
also provide a combinatorial characterisation that is sufficient to ensure
flux-concentration duality. That is, for every two disjoint sets of molecular
species, there is at least one reaction complex that involves species from only
one of the two sets. When unidirectional fluxes and molecular species
concentrations are dual vectors, this implies that the behaviour of the
corresponding biochemical network can be described entirely in terms of either
concentrations or unidirectional fluxes
Pareto Improving Reforms in the Presence of Spillovers and Spillbacks
Available at SSRN: https://ssrn.com/abstract=4622201 or http://dx.doi.org/10.2139/ssrn.462220
On the Computational Complexity of Stochastic Controller Optimization in POMDPs
We show that the problem of finding an optimal stochastic 'blind' controller
in a Markov decision process is an NP-hard problem. The corresponding decision
problem is NP-hard, in PSPACE, and SQRT-SUM-hard, hence placing it in NP would
imply breakthroughs in long-standing open problems in computer science. Our
result establishes that the more general problem of stochastic controller
optimization in POMDPs is also NP-hard. Nonetheless, we outline a special case
that is convex and admits efficient global solutions.Comment: Corrected error in the proof of Theorem 2, and revised Section
- …