54 research outputs found

    The crystal structure of K 2

    Full text link

    JOVE Pilot Research Study in Astronomy and Microgravity Sciences

    Get PDF
    The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. We have constructed a prototype of the glove to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. A long gage is used to average the strain generated in the sensor due to bending. This average strain produces an output signal proportional to the angle of the bend. The force sensor, FSR, is manufactured by Interlink. It consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. When the electrode makes contact, current flows through the conductive ink. The resistance of the ink pad is sensitive to pressure. We have also developed circuits for exciting and measuring the sensors. The current version requires a single sided twelve volt power supply which is one inch long and 0.4 inches in diameter

    On the Hardness of a New Boron Phase, Orthorhombic {\gamma}-B28

    Full text link
    Measurements of the hardness of a new high-pressure boron phase, orthorhombic {\gamma}-B28, are reported. According to the data obtained, {\gamma}-B28 has the highest hardness (~50 GPa) of all known crystalline modifications of boron

    The crystal structure of cadmium potassium orthovanadate KCd 4

    Full text link
    International audienceThe structure of KCd4(VO4)3 has been determined from Patterson and Fourier syntheses and refined by full-matrix least squares with 1130 diffractometer data to R = 0.061..

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    Thermodynamic model of hardness: Particular case of boron-rich solids

    Get PDF
    A number of successful theoretical models of hardness have been developed recently. A thermodynamic model of hardness, which supposes the intrinsic character of correlation between hardness and thermodynamic properties of solids, allows one to predict hardness of known or even hypothetical solids from the data on Gibbs energy of atomization of the elements, which implicitly determine the energy density per chemical bonding. The only structural data needed is the coordination number of the atoms in a lattice. Using this approach, the hardness of known and hypothetical polymorphs of pure boron and a number of boron-rich solids has been calculated. The thermodynamic interpretation of the bonding energy allows one to predict the hardness as a function of thermodynamic parameters. In particular, the excellent agreement between experimental and calculated values has been observed not only for the room- temperature values of the Vickers hardness of stoichiometric compounds, but also for its temperature and concentration dependencies

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Crystal structure of silver hexavanadium octasulfide, Ag 0.26

    No full text

    The crystal structure of SiB≈ 36

    No full text
    corecore