5,651 research outputs found

    Computer Microscopy of Biological Fluid Dry Patterns for Medical Diagnostics

    Get PDF
    We elaborate hardware and software system that implements the principle of diagnosis based on the standard procedure of pattern preparation including digital recognition of image and its computer analysis based on specially developed algorithms by comparing with the expert descriptors and extensive database of dry pattern samples obtained from clinical treatments which include more than 1500 samples to high selective and accuracy recognition of pathologies, for recognition of wide range of pathologies, in particular, the endogenous intoxication. Keywords: biological fluids, image analysis, medical diagnostics, endogenous intoxication

    Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    Get PDF
    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 °С within~ 120 min

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states

    Full text link
    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO2_2 and GaAs/AlGaAs systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.

    Domain formation by ion beam in lithium niobate crystal with suppression of surface charging by electron and UV-flood guns

    Full text link
    The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University was used. The research was made possible by the Russian Science Foundation (grant № 17-72-10152)

    Domain Shape Appeared in Stoichiometric Lithium Niobate as a Result of Ion Beam Irradiation

    Get PDF
    We have studied the formation of isolated domains induced by ion beam irradiation in the stoichiometric lithium niobate (SLN) single crystals covered by surface dielectric layer. The unusual domain shape was revealed at the irradiated polar surface at the doses above 20 pC. The nested domain shape with hexagonal outer part and circle inner one has been distinguished. The domains visualization in the bulk showed the hexagonal domain shape in the depth. The obtained effect was attributed to backswitching under the action of electric field produced by space charge dipped to LN plate at the doses above 20 pC due to essential ion beam sputtering effect

    Derivation of the particle dynamics from kinetic equations

    Full text link
    We consider the microscopic solutions of the Boltzmann-Enskog equation discovered by Bogolyubov. The fact that the time-irreversible kinetic equation has time-reversible microscopic solutions is rather surprising. We analyze this paradox and show that the reversibility or irreversibility property of the Boltzmann-Enskog equation depends on the considered class of solutions. If the considered solutions have the form of sums of delta-functions, then the equation is reversible. If the considered solutions belong to the class of continuously differentiable functions, then the equation is irreversible. Also, we construct the so called approximate microscopic solutions. These solutions are continuously differentiable and they are reversible on bounded time intervals. This analysis suggests a way to reconcile the time-irreversible kinetic equations with the time-reversible particle dynamics. Usually one tries to derive the kinetic equations from the particle dynamics. On the contrary, we postulate the Boltzmann-Enskog equation or another kinetic equation and treat their microscopic solutions as the particle dynamics. So, instead of the derivation of the kinetic equations from the microdynamics we suggest a kind of derivation of the microdynamics from the kinetic equations.Comment: 18 pages; some misprints have been corrected, some references have been adde

    Domain creation by electron and ion beams in lithium tantalate crystals

    Full text link
    The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University was used. The research was made possible by the Russian Science Foundation (grant № 17-72-10152)

    Joule heating effects on quartz particle melting in high-temperature silicate melt

    Get PDF
    This work is mostly focused on the melting process model simulation of quartz particles having the radius within the range of 10{-6}-10{-3} m. The melting process is simulated accounting for the heat generation at an electric current passage through a quartz particle
    corecore