50 research outputs found
Distribution of components in epitaxial graded band gap heterostructures Cd(Mn, Zn)Te β Cd(Mn, Zn)HgTe and their photoelectrical properties
By using the method of VPE CdMnTe-CdMnHgTe, CdZnTe-CdZnHgTe heterocompositions were fabricated. Increase of their photo-sensitivity in comparison with the CdTe-CdHgTe structure is explained by removal of deformation stresses due to introduction of isovalent component (Mn, Zn) of smaller size and due to reduction of recombination activity of non-equilibrium charge carriers in the film. Photo-sensitivity increase in the field of metallurgical boundary in the CdMnTe-CdMnHgTe structure under increase of the Mn contents up to Ρ Π 0,08 in comparison to the CdZnTe-CdZnHgTe structure is connected with more precise matching of lattices matching of the initial materials. Other models of this phenomena are also discussed, conditioned in particular, by the influence of micro- and macro- heterogeneities of the diffusion interface, peculiarities of P-T diagrams, etc. On the basis of comparison of experimental and calculated profiles of the components distribution, the values of diffusion coefficient in the substrate and growing film were obtained.ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ€Π ΠΎΠ΄Π΅ΡΠΆΠ°Π½Ρ Π³Π΅ΡΠ΅ΡΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡΡ CdMnTe-CdMnHgTe (ΠΠΠ’-ΠΠΠ Π’), CdZnTe-CdZnHgTe (ΠΠ¦Π’-ΠΠ¦Π Π’). ΠΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΡΡ
ΡΠΎΡΠΎΡΡΡΠ»ΠΈΠ²ΠΎΡΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ ΡΠ· ΡΡΡΡΠΊΡΡΡΠΎΡ CdTe-CdHgTe (ΠΠ’-ΠΠ Π’) ΠΏΠΎΡΡΠ½ΡΡΡΡΡΡ Π·Π½ΡΡΡΡΠΌ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΡΠΉΠ½ΠΈΡ
Π½Π°ΠΏΡΡΠ³ Π·Π°Π²Π΄ΡΠΊΠΈ Π²Π²Π΅Π΄Π΅Π½Π½Ρ ΡΠ·ΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡ ΡΠΊΠ»Π°Π΄ΠΎΠ²ΠΎΡ (Mn, Zn) ΠΌΠ΅Π½ΡΠΎΠ³ΠΎ ΡΠΎΠ·ΠΌΡΡΡ Ρ Π·Π½ΠΈΠΆΠ΅Π½Π½ΡΠΌ ΡΠ΅ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΠΉΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π΅ΡΡΠ²Π½ΠΎΠ²Π°ΠΆΠ½ΠΈΡ
Π½ΠΎΡΡΡΠ² Π·Π°ΡΡΠ΄Ρ Π² ΠΏΠ»ΡΠ²ΡΡ. ΠΠ±ΡΠ»ΡΡΠ΅Π½Π½Ρ ΡΠΎΡΠΎΡΡΡΠ»ΠΈΠ²ΠΎΡΡΡ Π² ΠΎΠ±Π»Π°ΡΡΡ ΠΌΠ΅ΡΠ°Π»ΡΡΠ³ΡΠΉΠ½ΠΎΡ Π³ΡΠ°Π½ΠΈΡΡ Π² ΡΡΡΡΠΊΡΡΡΡ ΠΠΠ’-ΠΠΠ Π’ ΠΏΡΠΈ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ Π²ΠΌΡΡΡΡ Mn Π΄ΠΎ y Π 0,08 ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ ΡΠ· ΡΡΡΡΠΊΡΡΡΠΎΡ ΠΠ¦Π’-ΠΠ¦Π Π’ ΠΏΠΎΠ².ΡΠ·ΡΡΡΡΡΡ Π· Π±ΡΠ»ΡΡ ΠΏΡΠ΅ΡΠΈΠ·ΡΠΉΠ½ΠΈΠΌ ΡΠ·Π³ΠΎΠ΄ΠΆΠ΅Π½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡΠ² ΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΈΡ
Π³ΡΠ°ΡΠΎΠΊ Π²ΠΈΡ
ΡΠ΄Π½ΠΈΡ
ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ². ΠΠ±Π³ΠΎΠ²ΠΎΡΡΡΡΡΡΡ Ρ ΡΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠΈΡ
ΡΠ²ΠΈΡ, ΠΏΠΎΠ².ΡΠ·Π°Π½Ρ, Π·ΠΎΠΊΡΠ΅ΠΌΠ° Π· Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ ΠΌΡΠΊΡΠΎ- Ρ ΠΌΠ°ΠΊΡΠΎ Π½Π΅ΠΎΠ΄Π½ΠΎΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ Π΄ΠΈΡΡΠ·ΡΠΉΠ½ΠΎΡ Π³ΡΠ°Π½ΠΈΡΡ, ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΡΠΌΠΈ Π -Π’-Ρ
Π΄ΡΠ°Π³ΡΠ°ΠΌ Ρ ΡΠ½Ρ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΏΡΠ²ΡΡΠ°Π²Π»Π΅Π½Π½Ρ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΈΡ
Ρ ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΡΠ»ΡΠ² ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ»Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΎΡΡΠΈΠΌΠ°Π½Ρ Π·Π½Π°ΡΠ΅Π½Π½Ρ Π΄Π»Ρ ΡΡ
ΠΊΠΎΠ΅ΡΡΡΡΡΠ½ΡΡΠ² Π΄ΠΈΡΡΠ·ΡΡ Π² ΠΏΡΠ΄ΠΊΠ»Π°Π΄ΡΡ Ρ Π½Π°ΡΠΎΡΡΠ°ΡΡΡΠΉ ΠΏΠ»ΡΠ²ΡΡ.ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ€Π ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π³Π΅ΡΠ΅ΡΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ CdMnTe-CdMnHgTe, CdZnTe-CdZnHgTe. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΡ
ΡΠΎΡΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ ΡΡΡΡΠΊΡΡΡΠΎΠΉ CdMnTe-CdTe-CdHgTe ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ½ΡΡΠΈΠ΅ΠΌ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΠ·ΠΎΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ (Mn, Zn) ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½Π΅ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΡΡ
Π½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ Π·Π°ΡΡΠ΄Π° Π² ΠΏΠ»Π΅Π½ΠΊΠ΅. Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΡ Π² ΡΡΡΡΠΊΡΡΡΠ΅ CdMnTe-CdMnHgTe ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Mn Π΄ΠΎ Ρ Π 0,08 ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ ΡΡΡΡΠΊΡΡΡΠΎΠΉ CdZnTe-CdZnHgTe ΡΠ²ΡΠ·ΡΠ²Π°Π΅ΡΡΡ Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠ΅ΡΠΈΠ·ΠΈΠΎΠ½Π½ΡΠΌ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅ΡΠΎΠΊ ΠΈΡΡ
ΠΎΠ΄Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΠΈΡ
ΡΠ²Π»Π΅Π½ΠΈΠΉ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠ΅, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡΠΎ- ΠΈ ΠΌΠ°ΠΊΡΠΎ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΠ΅ΠΉ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΡ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ Π -Π’-Ρ
Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌ ΠΈ Π΄Ρ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΡΠΈΠ»Π΅ΠΉ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Π² ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ ΠΈ Π½Π°ΡΠ°ΡΡΠ°ΡΡΠ΅ΠΉ ΠΏΠ»Π΅Π½ΠΊΠ΅
ΠΠΠΠΠΠΠ’ΠΠΠ ΠΠΠΠΠ’ΠΠΠΠΠΠ¬ΠΠΠ ΠΠΠ‘Π€Π£ΠΠΠ¦ΠΠ Π£ ΠΠΠΠ¬ΠΠ«Π₯ Π‘ Π‘ΠΠΠΠ ΠΠΠΠ ΠΠΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ Π‘Π’ΠΠΠ«
Background: In recent years, scientists have become increasingly interested in the role of the endothelium in the pathogenesis of vascular lesions of various origins, including diabetic patients. Therefore, the aim of the study was to investigate the expression of endothelial dysfunction in patients with diabetic foot syndrome (DFS), by examining the levels of nitric oxide, endothelin-1 levels in the serum, as well as lower limb microcirculation by laser doppler flowmetry. Patients and methods: It was examined 72 patients with diabetic foot syndrome with I-IV degree of lesion (by Meggit-Wagner classification). Neuropathic form was diagnosed in 32 people, ischemic β 40 patients. The function of endothelium was studied on the basis of the determination of enzyme-linked immunosorbent NO and endothelin-1 in peripheral blood serum, as well as to assess the state of the microcirculation of the lower limbs by laser doppler flowmetry, using apparatus LACK-02 (Russia). Results: Patients with DFS are marked with endothelial dysfunction, the severity of which depends on the type of diabetes, glycemic level and pathogenic forms of destruction. This is manifested by secretion reducing of vasodilators (NO) and increased synthesis of vasoconstrictors (endothelin-1), which leads to disruption of peripheral hemodynamic. Characteristic changes in the microcirculation are a dramatic violation of endothelium-dependent regulation mechanism, the redistribution of blood towards the nutritional circulation. Also it is showed a significant reduction in reserve capacity of the capillary bed in response to the sample and the occlusal restoration of blood flow during reactive hyperemia. Conclusion: Development of endothelial dysfunction and changes in peripheral hemodynamic in patients with DFS contributes to the emergence and prolongation of necrotic lesions, as well as violation of reparative processes.Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΡΠΎΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΡΡΠ΅Π½ΡΡ
ΠΊ ΡΠΎΠ»ΠΈ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ΄ΠΈΡΡΡΡ
ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°, Π² Ρ.Ρ. Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠ°Ρ
Π°ΡΠ½ΡΠΌ Π΄ΠΈΠ°Π±Π΅ΡΠΎΠΌ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΈΠ·ΡΡΠΈΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ Π΄ΠΈΠ°Π±Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΏΡ (Π‘ΠΠ‘) ΠΏΡΡΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠΊΡΠΈΠ΄Π° Π°Π·ΠΎΡΠ°, ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ½Π°-1 Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π΄ΠΎΠΏΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΡΠ»ΠΎΡΠΌΠ΅ΡΡΠΈΠΈ. ΠΠ°ΡΠΈΠ΅Π½ΡΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ: ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ 72 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Ρ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ Π΄ΠΈΠ°Π±Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΏΡ IβIV ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ (ΠΏΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΠ΅Π³Π³ΠΈΡβΠΠ°Π³Π½Π΅ΡΠ°). ΠΠ΅ΠΉΡΠΎΠΏΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΌΠ° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΎΠ²Π°Π½Π° Ρ 32 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ, ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ β Ρ 40 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². Π€ΡΠ½ΠΊΡΠΈΡ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ ΠΈΠ·ΡΡΠ°Π»ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ NO ΠΈ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ½Π°-1 Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π΄ΠΎΠΏΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΡΠ»ΠΎΡΠΌΠ΅ΡΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° Β«ΠΠΠΠ-02Β» (Π ΠΎΡΡΠΈΡ). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π‘ΠΠ‘ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ, ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΈΠΏΠ° ΡΠ°Ρ
Π°ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π±Π΅ΡΠ°, ΡΡΠΎΠ²Π½Ρ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈ ΠΈ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΡΠΎ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΠΎΡΠΎΠ² (NO) ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΌ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠΌ Π²Π°Π·ΠΎΠΊΠΎΠ½ΡΡΡΠΈΠΊΡΠΎΡΠΎΠ² (ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ½Π°-1), ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΠΊΠΎΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠΉΠ·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Ρ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΡΠΎΠ²ΠΈ Π² ΡΡΠΎΡΠΎΠ½Ρ Π½ΡΡΡΠΈΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ. Π’Π°ΠΊΠΆΠ΅ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡΠ·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π·Π΅ΡΠ²Π½ΡΡ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ»Π° Π² ΠΎΡΠ²Π΅Ρ Π½Π° ΠΎΠΊΠΊΠ»ΡΠ·ΠΈΠΎΠ½Π½ΡΡ ΠΏΡΠΎΠ±Ρ ΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΠ΅ΠΌΠΈΠΈ. ΠΡΠ²ΠΎΠ΄Ρ: ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ Π‘ΠΠ‘ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΠ»ΠΎΠ½Π³Π°ΡΠΈΠΈ Π³Π½ΠΎΠΉΠ½ΠΎ-Π½Π΅ΠΊΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²
Study of creep of nickel in external magnetic field
The creep of nickel in external magnetic field was studied. It was shown that at turning on and turning off of the magnetic field a drastic weakening of nickel takes place. The magnitude of weakening depends on the magnetic field change rate. It is shown that the sole reason for explanation of the observed effect of material plasticity increasing is the dynamics of nonequilibrium electron-phonon subsystem caused by eddy electric field influence.ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΏΠΎΠ²Π·ΡΡΡΡΡΡ Π½ΡΠΊΠ΅Π»Ρ Π² Π·ΠΎΠ²Π½ΡΡΠ½ΡΠΎΠΌΡ ΠΌΠ°Π³Π½ΡΡΠ½ΠΎΠΌΡ ΠΏΠΎΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΠΏΡΠΈ Π²Π²ΡΠΌΠΊΠ½Π΅Π½Π½Ρ ΡΠ° Π²ΠΈΠΌΠΊ-Π½Π΅Π½Π½Ρ ΠΌΠ°Π³Π½ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²ΡΠ΄Π±ΡΠ²Π°ΡΡΡΡΡ ΡΡΠ·ΠΊΠ΅ Π·Π½Π΅ΠΌΡΡΠ½Π΅Π½Π½Ρ Π½ΡΠΊΠ΅Π»Ρ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Π·Π½Π΅ΠΌΡΡΠ½Π΅Π½Π½Ρ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ ΡΠ²ΠΈΠ΄ΠΊΠΎΡΡΡ Π·ΠΌΡΠ½ΠΈ ΠΌΠ°Π³Π½ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΡΠ΄ΠΈΠ½ΠΎΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΡ, ΡΠΎ ΠΏΠΎΡΡΠ½ΡΡ ΡΠΏΠΎΡΡΠ΅ΡΠ΅ΠΆΠ΅Π½ΠΈΠΉ Π΅ΡΠ΅ΠΊΡ Π·Π½Π΅ΠΌΡΡΠ½Π΅Π½Π½Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»Ρ, Ρ Π²ΠΏΠ»ΠΈΠ² Π²ΠΈΡ
ΡΠΎΠ²ΠΎΠ³ΠΎ (ΡΠ½Π΄ΡΠΊΡΡΠΉΠ½ΠΎΠ³ΠΎ) Π΅Π»Π΅ΠΊΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π½Π° Π΄ΠΈΠ½Π°ΠΌΡΠΊΡ Π½Π΅ΡΡΠ²Π½ΠΎΠ²Π°ΠΆΠ½ΠΎΡ Π΅Π»Π΅ΠΊΡΡΠΎΠ½-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΡ ΠΏΡΠ΄ΡΠΈΡΡΠ΅ΠΌΠΈ.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΏΠΎΠ»Π·ΡΡΠ΅ΡΡΡ Π½ΠΈΠΊΠ΅Π»Ρ Π² ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ΅ΠΌΡΡ Π²Π½Π΅ΡΠ½Π΅ΠΌ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΌ ΠΏΠΎΠ»Π΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΠΈ Π²ΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΡΠ΅Π·ΠΊΠΎΠ΅ ΡΠ°Π·ΡΠΏΡΠΎΡΠ½Π΅Π½ΠΈΠ΅ Π½ΠΈΠΊΠ΅Π»Ρ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΡΠ°Π·ΡΠΏΡΠΎΡΠ½Π΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ, ΠΎΠ±ΡΡΡΠ½ΡΡΡΠ΅ΠΉ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΠ°Π·ΡΠΏΡΠΎΡΠ½Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠ³ΠΎ (ΠΈΠ½Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ) ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ΄ΡΠΈΡΡΠ΅ΠΌΡ
Specific features of protein biosynthesis in higher eukaryotes
Over 40 years of studies in the field of higher eukaryotic translation are summarized in the review. Among the pioneer results obtained we should especially accentuate the following: i) discovery of the adaptation of tRNAs and aminoacyl-tRNA synthetases (ARSs) cellular pools to the synthesis of specific proteins and modulation of the elongation rate by rare isoacceptor tRNAs; ii) the chaperone-like properties of the translation components (ribosomes and elongation factor eEF1A); characterization of high molecular weight complexes of ARSs; iii) functional compartmentalization, including channeling of tRNA in eukaryotic cells; iv) molecular mechanisms of channeling mediated by different non-canonical complexes involving eEF1A, tRNA and aminoacyl-tRNA synthetases; v) characterization of the crystal structure of eEF1A2; vi) comparison of spatial structure, molecular dynamics, tyrosine phosphorylation and abilities to interact with different protein partners of the eEF1A1 and eEF1A2 isoforms; vii) discovery of the microRNA-mediated control of the expression of the proto-oncogenic eEF1A2 isoform in cancer cells; viii) examination of the cancer-related changes in translation elongation complex eEF1H and mechanisms of oncogene PTI-1 action; ix) discovery of the third tRNA binding site on mammals ribosomes and the allosteric interaction of the 80S ribosomal A and E sites.Π ΠΎΠ³Π»ΡΠ΄ ΠΏΡΠ΄ΡΡΠΌΠΎΠ²Π°Π½ΠΎ Π½Π°ΠΉΠ²Π°Π³ΠΎΠΌΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π±ΡΠ»ΡΡ Π½ΡΠΆ ΡΠΎΡΠΎΠΊΠ°Π»ΡΡΠ½ΡΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΡΡΠ°Π½ΡΠ»ΡΡΡΡ Ρ Π²ΠΈΡΠΈΡ
Π΅Π²ΠΊΠ°ΡΡΠΎΡΡΠ², Π·-ΠΏΠΎΠΌΡΠΆ ΡΠΊΠΈΡ
: 1) Π²ΡΠ΄ΠΊΡΠΈΡΡΡ Π°Π΄Π°ΠΏΡΠ°ΡΡΡ ΠΊΠ»ΡΡΠΈΠ½Π½ΠΈΡ
ΠΏΡΠ»ΡΠ² ΡΠ ΠΠ Ρ Π°ΠΌΡΠ½ΠΎΠ°ΡΠΈΠ»-ΡΠ ΠΠ ΡΠΈΠ½ΡΠ΅ΡΠ°Π· (ΠΠ Π‘Π°Π·) Π΄ΠΎ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠΏΠ΅ΡΠΈΡΡΡΠ½ΠΈΡ
Π±ΡΠ»ΠΊΡΠ² Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΡ ΡΠ²ΠΈΠ΄ΠΊΠΎΡΡΡ Π΅Π»ΠΎΠ½Π³Π°ΡΡΡ ΡΡΠ΄ΠΊΡΡΠ½ΠΈΠΌΠΈ ΡΠ·ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΠΈΠΌΠΈ ΡΠ ΠΠ; 2) Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ°ΠΏΠ΅ΡΠΎΠ½ΠΎΠΏΠΎΠ΄ΡΠ±Π½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ² Π°ΠΏΠ°ΡΠ°ΡΡ ΡΡΠ°Π½ΡΠ»ΡΡΡΡ (ΡΠΈΠ±ΠΎΡΠΎΠΌ Ρ ΡΠ°ΠΊΡΠΎΡΠ° Π΅Π»ΠΎΠ½Π³Π°ΡΡΡ eEF1A), Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²ΠΈΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² ΠΠ Π‘Π°Π·; 3) Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½Ρ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΡ ΠΊΠΎΠΌΠΏΠ°ΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ·Π°ΡΡΡ, Ρ ΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ ΠΊΠ°Π½Π°Π»ΡΠ²Π°Π½Π½Ρ ΡΠ ΠΠ Π² Π΅Π²ΠΊΠ°ΡΡΠΎΡΠ½ΠΈΡ
ΠΊΠ»ΡΡΠΈΠ½Π°Ρ
; 4) Π·βΡΡΡΠ²Π°Π½Π½Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΡΠ² ΠΊΠ°Π½Π°Π»ΡΠ²Π°Π½Π½Ρ, ΡΠΎ Π²ΡΠ΄Π±ΡΠ²Π°ΡΡΡΡΡ Π·Π° ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΠΈΡΡΠ²ΠΎΠΌ ΡΡΠ·Π½ΠΈΡ
Π½Π΅ΠΊΠ°Π½ΠΎΠ½ΡΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ², ΡΠΊΡ ΠΌΡΡΡΡΡΡ eEF1A, ΡΠ ΠΠ Ρ ΠΠ Π‘-Π°Π·ΠΈ; 5) Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΎΡ ΡΡΡΡΠΊΡΡΡΠΈ eEF1A2; 6) ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ ΠΏΡΠΎΡΡΠΎΡΠΎΠ²ΠΎΡ ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΡ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΡ Π΄ΠΈΠ½Π°ΠΌΡΠΊΠΈ, ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠΈΠ»ΡΠ²Π°Π½Π½Ρ Ρ Π·Π΄Π°ΡΠ½ΠΎΡΡΡ Π΄ΠΎ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π· ΡΡΠ·Π½ΠΈΠΌΠΈ Π±ΡΠ»ΠΊΠ°ΠΌΠΈ β ΠΏΠ°ΡΡΠ½Π΅ΡΠ°ΠΌΠΈ ΡΠ·ΠΎΡΠΎΡΠΌ eEF1A1 i eEF1A2; 7) Π²ΠΈΡΠ²Π»Π΅Π½Π½Ρ ΡΠΎΠ»Ρ ΠΌΡΠΊΡΠΎΠ ΠΠ Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π΅ΠΊΡΠΏΡΠ΅ΡΡΡ ΠΏΡΠΎΡΠΎΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½ΠΎΡ ΡΠ·ΠΎΡΠΎΡΠΌΠΈ eEF1A2 Π² ΡΠ°ΠΊΠΎΠ²ΠΈΡ
ΠΊΠ»ΡΡΠΈΠ½Π°Ρ
; 8) Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΠΏΡΠΈΡΠΈΠ½Π΅Π½ΠΈΡ
ΡΠ°ΠΊΠΎΠΌ Π·ΠΌΡΠ½ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ ΡΠ°ΠΊΡΠΎΡΡΠ² Π΅Π»ΠΎΠ½Π³Π°ΡΡΡ ΡΡΠ°Π½ΡΠ»ΡΡΡΡ eEF1H Ρ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΡΠ² Π΄ΡΡ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Ρ PTI-1; 9) Π²ΡΠ΄ΠΊΡΠΈΡΡΡ ΡΡΠ΅ΡΡΠΎΠ³ΠΎ ΡΠ°ΠΉΡΠ° Π·Π²βΡΠ·ΡΠ²Π°Π½Π½Ρ ΡΠ ΠΠ Ρ ΡΠΈΠ±ΠΎΡΠΎΠΌΠ°Ρ
ΡΡΠ°Π²ΡΡΠ² ΡΠ° Π°Π»ΠΎΡΡΠ΅ΡΠΈΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π- Ρ Π-ΡΠ°ΠΉΡΡΠ² 80S ΡΠΈΠ±ΠΎΡΠΎΠΌΠΈ.Π ΠΎΠ±Π·ΠΎΡΠ΅ ΡΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ ΡΠΎΡΠΎΠΊΠ°Π»Π΅ΡΠ½Π΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ Ρ Π²ΡΡΡΠΈΡ
ΡΡΠΊΠ°ΡΠΈΠΎΡ, ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ
: 1) ΠΎΡΠΊΡΡΡΠΈΠ΅ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΏΡΠ»ΠΎΠ² ΡΠ ΠΠ ΠΈ Π°ΠΌΠΈΠ½ΠΎΠ°ΡΠΈΠ»-ΡΠ ΠΠ ΡΠΈΠ½ΡΠ΅ΡΠ°Π· (ΠΠ Π‘Π°Π·) ΠΊ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ»ΠΎΠ½Π³Π°ΡΠΈΠΈ ΡΠ΅Π΄ΠΊΠΈΠΌΠΈ ΠΈΠ·ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΠΌΠΈ ΡΠ ΠΠ; 2) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΠΏΠ΅ΡΠΎΠ½ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ (ΡΠΈΠ±ΠΎΡΠΎΠΌ ΠΈ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠ»ΠΎΠ½Π³Π°ΡΠΈΠΈ eEF1A) ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΠ Π‘Π°Π·; 3) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°ΡΡΠΌΠ΅Π½ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ΅ΠΉ ΠΊΠ°Π½Π°Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ ΠΠ Π² ΡΡΠΊΠ°ΡΠΈΠΎΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
; 4) Π²ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΠ°Π½Π°Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π΅ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°ΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌΠΈ eEF1A, ΡΠ ΠΠ ΠΈ ΠΠ Π‘-Π°Π·Ρ; 5) Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ eEF1A2; 6) ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, ΡΠΈΡΠΎΠ·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ β ΠΏΠ°ΡΡΠ½Π΅ΡΠ°ΠΌΠΈ ΠΈΠ·ΠΎΡΠΎΡΠΌ eEF1A1 ΠΈ eEF1A2; 7) Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ ΠΌΠΈΠΊΡΠΎΠ ΠΠ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΏΡΠΎΡΠΎΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΈΠ·ΠΎΡΠΎΡΠΌΡ eEF1A2 Π² ΡΠ°ΠΊΠΎΠ²ΡΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
; 8) ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΡΠ°ΠΊΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΠ»ΠΎΠ½Π³Π°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ eEF1H ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π° Π Π’Π-1; 9) ΠΎΡΠΊΡΡΡΠΈΠ΅ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΡΠ°ΠΉΡΠ° ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ ΡΠ ΠΠ Π² ΡΠΈΠ±ΠΎΡΠΎΠΌΠ°Ρ
ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ
ΠΈ Π°Π»Π»ΠΎΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π- ΠΈ Π-ΡΠ°ΠΉΡΠΎΠ² Π½Π° 80S ΡΠΈΠ±ΠΎΡΠΎΠΌΠ°Ρ
Momentum relaxation of hot electrons during radiative intraband indirect transitions in ZnS:Cr
A structureless emission in the visible region was revealed in ZnS:Cr thin-film electroluminescent structures (TFELS) apart the main near-infrared emission resulted from the 5E β 5T2 transition in the 3d shell of the CrΒ²βΊ ion. This emission stems from intraband indirect transitions of hot electrons. The comparison between experimental intensity spectral dependence and the same dependence calculated for different mechanisms of the momentum relaxation shows that the scattering on charged impurities takes place during this emission. The Cr+ ions existing in ZnS:Cr in addition to predominant CrΒ²βΊ ions serve as scattering charge centers. This is confirmed by study of the magnetic field (H) effect on the intensity (I) of the hot electron emission at 4.2 K. The experimental dependence I(H) coincides with the calculated magnetic field dependence of the exchange scattering cross-section of CrβΊ ion with the spin 5/2 and g-factor 2. This result also indicates that both the Coulomb interaction with Cr+ ions and the exchange scattering on them present during the hot electron emission in the ZnS:Cr TFELS
Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion
We present theoretical and experimental study of preparing maximally
entangled two-photon polarization states, or Bell states, using femtosecond
pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how
the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be
removed by using an interferometric technique without spectral and amplitude
post-selection. We then analyze the recently introduced Bell state preparation
scheme using type-I SPDC. Theoretically, both methods offer the same results,
however, type-I SPDC provides experimentally superior methods of preparing Bell
states in femtosecond pulse pumped SPDC. Such a pulsed source of highly
entangled photon pairs is useful in quantum communications, quantum
cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR
ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΠΠΠΠ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΠΎΡΡΡΡΠΌ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΡΠΌ Π΄ΠΈΡΡΡΠ΅ΡΡ-ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ, Π²ΡΠ·Π²Π°Π½Π½ΡΠΌ ΠΏΡΡΠΌΡΠΌΠΈ ΠΈ Π½Π΅ΠΏΡΡΠΌΡΠΌΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ
Objective: to study the clinical efficiency of undifferentiated and differentiated use of escalation and de-escalation procedures for optimizing positive end-expiratory pressure (PEEP) during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) resulting from direct and indirect damaging factors. Subjects and methods. During a prospective study, 24 examined patients (16 men, 8 women; their age was 22 to 65 years) with ARDS of different genesis were divided into 2 groups. Group A (n=11; 7 men, 4 women) and Group B (n=13; 9 men, 4 women) included patients with ARDS arising from both direct (gastric content aspiration, blunt chest injury with lung contusion, and acute bilateral bacterial pneumonia) and indirect (abdominal sepsis, severe nonthoracic injury, and acute massive blood loss) damaging factors. The results of treatment via differentiated or undifferentiated, according to the cause of ARDS, use of escalation and de-escalation procedures for PEEP optimization were assessed in Groups A and B patients. Results. The differentiated, according to the cause of ARDS, use of escalation and de-escalation procedures for PEEP optimization makes it possible to more effectively improve the parameters of pulmonary gas exchange and biomechanics and to reduce the length of respiratory support and stay in the intensive care unit, the incidence of ventilator-associated pneumonia, and mortality rates in patients with ARDS resulting from direct and indirect damaging factors. Conclusion. It is advisable to apply the differentiated, according to the cause of ARDS, approach to choosing escalation or de-escalation procedures to optimize PEEP in patients with ARDS of different genesis. Key words: acute respiratory distress syndrome, direct damaging factors, indirect damaging factors, mechanical ventilation, positive end-expiratory pressure, escalation PEEP optimization procedure, de-escalation PEEP optimization procedure, lung opening manoeuver.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½Π΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈ Π΄Π΅ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΠΊΠΎΠ½ΡΠ΅ Π²ΡΠ΄ΠΎΡ
Π° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΎΡΡΡΡΠΌ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΡΠΌ Π΄ΠΈΡΡΡΠ΅ΡΡ-ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ, ΡΠ°Π·Π²ΠΈΠ²ΡΠΈΠΌΡΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΡΠΌΡΡ
ΠΈ Π½Π΅ΠΏΡΡΠΌΡΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ². ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. 24 ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
Π±ΠΎΠ»ΡΠ½ΡΡ
(16 ΠΌΡΠΆΡΠΈΠ½, 8 ΠΆΠ΅Π½ΡΠΈΠ½, Π²ΠΎΠ·ΡΠ°ΡΡ ΠΎΡ 22 Π΄ΠΎ 65 Π»Π΅Ρ) Ρ ΠΠ ΠΠ‘ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π° Π² Ρ
ΠΎΠ΄Π΅ ΠΏΡΠΎΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° 2 Π³ΡΡΠΏΠΏΡ. ΠΡΡΠΏΠΏΠ° Π (Ρ=11, 7 ΠΌΡΠΆΡΠΈΠ½, 4 ΠΆΠ΅Π½ΡΠΈΠ½Ρ) ΠΈ Π³ΡΡΠΏΠΏΠ° B (n=13, 9 ΠΌΡΠΆΡΠΈΠ½, 4 ΠΆΠ΅Π½ΡΠΈΠ½Ρ) β Π±ΠΎΠ»ΡΠ½ΡΠ΅ Ρ ΠΠ ΠΠ‘, ΡΠ°Π·Π²ΠΈΠ²ΡΠΈΠΌΡΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΡΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² (Π°ΡΠΏΠΈΡΠ°ΡΠΈΡ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠΈΠΌΡΠΌ, ΡΡΠΏΠ°Ρ ΡΡΠ°Π²ΠΌΠ° Π³ΡΡΠ΄ΠΈ Ρ ΡΡΠΈΠ±ΠΎΠΌ Π»Π΅Π³ΠΊΠΈΡ
, ΠΎΡΡΡΠ°Ρ Π΄Π²ΡΡΡΠΎΡΠΎΠ½Π½ΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΡ), ΡΠ°ΠΊ ΠΈ Π½Π΅ΠΏΡΡΠΌΡΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² (Π°Π±Π΄ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΡΠ΅ΠΏΡΠΈΡ, ΡΡΠΆΠ΅Π»Π°Ρ Π½Π΅ΡΠΎΡΠ°ΠΊΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π²ΠΌΠ°, ΠΎΡΡΡΠ°Ρ ΠΌΠ°ΡΡΠΈΠ²Π½Π°Ρ ΠΊΡΠΎΠ²ΠΎΠΏΠΎΡΠ΅ΡΡ). Π£ Π±ΠΎΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ Π ΠΈ Π ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΈΡΠΈΠ½ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠ ΠΠ‘, ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π΄Π΅ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠΠ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΈΡΠΈΠ½ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠ ΠΠ‘, ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈ Π΄Π΅ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠΠ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ»ΡΡΡΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½Π° ΠΈ Π±ΠΈΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ Π»Π΅Π³ΠΊΠΈΡ
, ΡΠΎΠΊΡΠ°ΡΠΈΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ, ΠΏΡΠ΅Π±ΡΠ²Π°Π½ΠΈΡ Π² ΡΠ΅Π°Π½ΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠΈ, ΡΠ°ΡΡΠΎΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡ-Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ ΠΈ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΡ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠ ΠΠ‘, ΡΠ°Π·Π²ΠΈΠ²ΡΠΈΠΌΡΡ Π½Π° ΡΠΎΠ½Π΅ ΠΏΡΡΠΌΡΡ
ΠΈ Π½Π΅ΠΏΡΡΠΌΡΡ
ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ². ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π£ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠ ΠΠ‘ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π° ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΈΡΠΈΠ½Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠ ΠΠ‘, ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ Π²ΡΠ±ΠΎΡΡ ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π΄Π΅ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠΠ. ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: ΠΎΡΡΡΡΠΉ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΡΠΉ Π΄ΠΈΡΡΡΠ΅ΡΡ-ΡΠΈΠ½Π΄ΡΠΎΠΌ, ΠΏΡΡΠΌΡΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, Π½Π΅ΠΏΡΡΠΌΡΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π°ΡΡΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½Π°Ρ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΠΊΠΎΠ½ΡΠ΅ Π²ΡΠ΄ΠΎΡ
Π°, ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠΠ, Π΄Π΅ΡΡΠΊΠ°Π»Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠΠ, ΠΏΡΠΈΠ΅ΠΌ Β«ΠΎΡΠΊΡΡΡΠΈΡΒ» Π»Π΅Π³ΠΊΠΈΡ
Influence of Hyperhomocysteinemia on Development of Non-Alcoholic Fatty Liver Disease in Diabetes Mellitus
In 137 patients with diabetes mellitus, non-alcoholic fatty liver disease and with combination of these diseases there had been studied the pathogenetic mechanisms of hyperhomocysteinemia influence on formation of non-alcoholic fatty liver disease. The following disorders were revealed: the augmentation of homocysteine content; atherogenic types of dyslipidemia; disorders of bile-secreting liver function, of all types of metabolism; development of endothelial dysfunction; disorders of lipid peroxidation system and antioxidant activity in patients with diabetes mellitus, non-alcoholic fatty liver disease, that led to disorder of hepatocytes integrity, development of fatty hepatosis and increase of incidence of late complications of diabetes mellitus
Use of Neurovitan in the Treatment of Endocrine Polyneuropathy
Neurovitan may be the drug of choice in the implementation of complex therapy of neurotropic vitamins in patients with endocrine pathology. Objectiv: to study the effectiveness of Neurovitan Β in the complex treatment of endocrine polyendocrinopathy. Materials and methods: we examined 18 patients with diabetes mellitus and 15 patients with hypothyroidism. All patients were diagnosed distal polyneuropathy of the hands and feet. The drug Neurovitan took all patients 1 table. 4 times a day for 2 months. Conclusions: the use of the drug Neurovitan in the treatment of patients with diabetes and hypothyroidism can prevent violations that are a consequence of polyneuropathy