194 research outputs found

    In vitro efficacy of tavaborole topical solution, 5% after penetration through nail polish on ex vivo human fingernails

    Get PDF
    This document is the Accepted Manuscript of the following article: Aditya K. Gupta, et al, 'In vitro efficacy of tavaborole topical solution, 5% after penetration through nail polish on ex vivo human fingernails', Journal of Dermatological Treatment, Jan 2018. Under embargo until 10 January 2019. The final, published version is available online at doi: https://doi.org/10.1080/09546634.2017.1422078.Background: Topical antifungal treatments for onychomycosis are applied to clean, unpolished nails for 48 weeks or longer. Patients often wish to mask their infection with nail polish yet there is no evidence to suggest antifungal efficacy in the presence of nail polish. Objective: To determine if tavaborole retains the ability to penetrate the nail plate and inhibit fungal growth in the presence of nail polish. Method: Tavaborole was applied to human fingernails painted with 2 or 4 coats of nail polish, and unpainted nails in an ex vivo model. Nails were mounted on TurChub ® chambers seeded with Trichophyton rubrum and allowed to incubate for 7 days. Antifungal activity was assessed by measuring zones of inhibition. Results and conclusion: Tavaborole exhibited antifungal activity in all experimental groups. The zones of inhibition of T. rubrum for all experimental groups (2 or 4 coats of polish, unpolished) were greater than infected controls (polished and unpolished), p s <.001. Tavaborole penetrates polished nails and kills T. rubrum in this ex vivo model.Peer reviewe

    A Pair Polarimeter for Linearly Polarized High Energy Photons

    Get PDF
    A high quality beam of linearly polarized photons of several GeV will become available with the coherent bremsstrahlung technique at JLab. We have developed a polarimeter which requires about two meters of the beam line, has an analyzing power of 20% and an efficiency of 0.02%. The layout and first results of a polarimeter test on the laser back-scattering photon beam at SPring-8/LEPS are presented

    High temperature measurements and condensed matter analysis of the thermo-physical properties of ThO2

    No full text
    Values are presented for thermal conductivity, specific heat, spectral and total hemispherical emissivity of ThO2 (a potential nuclear fuel material) in a temperature range representative of a nuclear accident - 2000 K to 3050 K. For the first time direct measurements of thermal conductivity have been carried out on ThO2 at such high temperatures, clearly showing the property does not decrease above 2000 K. This could be understood in terms of an electronic contribution (arising from defect induced donor/acceptor states) compensating the degradation of lattice thermal conductivity. The increase in total hemispherical emissivity and visible/near-infrared spectral emissivity is consistent with the formation of donor/acceptor states in the band gap of ThO2. The electronic population of these defect states increases with temperature and hence more incoming photons (in the visible and near-infrared wavelength range) can be absorbed. A solid state physics model is used to interpret the experimental results. Specific heat and thermal expansion coefficient increase at high temperatures due to the formation of defects, in particular oxygen Frenkel pairs. Prior to melting a gradual increase to a maximum value is predicted in both properties. These maxima mark the onset of saturation of oxygen interstitial sites

    Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K

    Get PDF
    This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites

    Validation of the Wiedemann-Franz Law in solid and molten tungsten above 2000 K through thermal conductivity measurements via steady state temperature differential radiometry

    Full text link
    We measure the thermal conductivity of solid and molten tungsten using Steady State Temperature Differential Radiometry. We demonstrate that the thermal conductivity can be well described by application of Wiedemann-Franz Law to electrical resistivity data, thus suggesting the validity of Wiedemann-Franz Law to capture the electronic thermal conductivity of metals in their molten phase. We further support this conclusion using ab initio molecular dynamics simulations with a machine-learned potential. Our results show that at these high temperatures, the vibrational contribution to thermal conductivity is negligible compared to the electronic component

    Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV

    Get PDF
    The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure

    Cross Section Measurement of Charged Pion Photoproduction from Hydrogen and Deuterium

    Get PDF
    We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams

    Compton Scattering Cross Section on the Proton at High Momentum Transfer

    Get PDF
    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.Comment: 5 pages, 5 figure

    New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a `strained' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for Phys. Lett.
    • …
    corecore