1,063 research outputs found

    Analyticity of the Scattering Amplitude, Causality and High-Energy Bounds in Quantum Field Theory on Noncommutative Space-Time

    Full text link
    In the framework of quantum field theory (QFT) on noncommutative (NC) space-time with the symmetry group O(1,1)×SO(2)O(1,1)\times SO(2), we prove that the Jost-Lehmann-Dyson representation, based on the causality condition taken in connection with this symmetry, leads to the mere impossibility of drawing any conclusion on the analyticity of the 222\to 2-scattering amplitude in cosΘ\cos\Theta, Θ\Theta being the scattering angle. Discussions on the possible ways of obtaining high-energy bounds analogous to the Froissart-Martin bound on the total cross-section are also presented.Comment: 25 page

    Introductory Chapter: IVF Technology and Perspectives

    Get PDF

    Kinetic simulations of turbulent magnetic-field growth by streaming cosmic rays

    Full text link
    Efficient acceleration of cosmic rays (via the mechanism of diffusive shock acceleration) requires turbulent, amplified magnetic fields in the shock's upstream region. We present results of multidimensional particle-in-cell simulations aimed at observing the magnetic field amplification that is expected to arise from the cosmic-ray current ahead of the shock, and the impact on the properties of the upstream interstellar medium. We find that the initial structure and peak strength of the amplified field is somewhat sensitive to the choice of parameters, but that the field growth saturates in a similar manner in all cases: the back-reaction on the cosmic rays leads to modification of their rest-frame distribution and also a net transfer of momentum to the interstellar medium, substantially weakening their relative drift while also implying the development of a modified shock. The upstream medium becomes turbulent, with significant spatial fluctuations in density and velocity, the latter in particular leading to moderate upstream heating; such fluctuations will also have a strong influence on the shock structure.Comment: 8 pages, 6 figures, accepted by Ap

    Parametric instability in dark molecular clouds

    Get PDF
    The present work investigates the parametric instability of parallel propagating circularly polarized Alfven(pump) waves in a weakly ionized molecular cloud. It is shown that the relative drift between the plasma particles gives rise to the Hall effect resulting in the modified pump wave characteristics. Although the linearized fluid equations with periodic coefficients are difficult to solve analytically, it is shown that a linear transformation can remove the periodic dependence. The resulting linearized equations with constant coefficients are used to derive an algebraic dispersion relation. The growth rate of the parametric instability is a sensitive function of the amplitude of the pump wave as well as to the ratio of the pump and the modified dust-cyclotron frequencies. The instability is insensitive to the plasma-beta The results are applied to the molecular clouds.Comment: 27 page, 5 figures, accepted in Ap

    Completeness of ``Good'' Bethe Ansatz Solutions of a Quantum Group Invariant Heisenberg Model

    Get PDF
    The slq(2)sl_q(2)-quantum group invariant spin 1/2 XXZ-Heisenberg model with open boundary conditions is investigated by means of the Bethe ansatz. As is well known, quantum groups for qq equal to a root of unity possess a finite number of ``good'' representations with non-zero q-dimension and ``bad'' ones with vanishing q-dimension. Correspondingly, the state space of an invariant Heisenberg chain decomposes into ``good'' and ``bad'' states. A ``good'' state may be described by a path of only ``good'' representations. It is shown that the ``good'' states are given by all ``good'' Bethe ansatz solutions with roots restricted to the first periodicity strip, i.e. only positive parity strings (in the language of Takahashi) are allowed. Applying Bethe's string counting technique completeness of the ``good'' Bethe states is proven, i.e. the same number of states is found as the number of all restricted path's on the slq(2)sl_q(2)-Bratteli diagram. It is the first time that a ``completeness" proof for an anisotropic quantum invariant reduced Heisenberg model is performed.Comment: LaTeX file with LaTeX figures, 24 pages, 1 PiCTeX figur

    Applications of QCD

    Get PDF
    Talk given at XIXth International Symposium on Lepton and Photon Interactions at High Energies (LP 99), Stanford, California, 9-14 August 1999.Comment: latex, 26 page

    Jost-Lehmann-Dyson Representation, Analyticity in Angle Variable and Upper Bounds in Noncommutative Quantum Field Theory

    Full text link
    The existence of Jost-Lehmann-Dyson representation analogue has been proved in framework of space-space noncommutative quantum field theory. On the basis of this representation it has been found that some class of elastic amplitudes admits an analytical continuation into complex \cos\vartheta plane and corresponding domain of analyticity is Martin ellipse. This analyticity combined with unitarity leads to Froissart-Martin upper bound on total cross section.Comment: LaTeX, 15 pages, improved version, misprints corrected, the references added, to appear in Theor. Math. Phy

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-

    Emulating the impact of additional proton–proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events

    Get PDF
    The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy

    The Fayet-Iliopoulos D-term and its renormalisation in softly-broken supersymmetric theories

    Get PDF
    We consider the renormalisation of the Fayet-Iliopoulos D-term in a softly-broken abelian supersymmetric theory, and calculate the associated beta-function through three loops. We show that there exists (at least through three loops) a renormalisation group invariant trajectory for the coefficient of the D-term, corresponding to the conformal anomaly solution for the soft masses and couplings.Comment: 30 pages, Revtex, 15 Figures. Minor changes, and inadvertent omission of author from this abstract correcte
    corecore